

Reinforced Concrete Shear Wall Analysis and Design

Reinforced Concrete Shear Wall Analysis and Design

A structural reinforced concrete shear wall in a 5-story building provides lateral and gravity load resistance for the applied load as shown in the figure below. Shear wall section and assumed reinforcement is investigated after analysis to verify suitability for the applied loads.

Figure 1 - Reinforced Concrete Shear Wall Geometry and Loading

Contents

1.	Minimum Reinforcement Requirements (Reinforcement Percentage and Spacing)	2
	1.1. Horizontal Reinforcement Check	2
	1.2. Vertical Reinforcement Check	2
2.	Neutral Axis Depth Determination	3
3.	Moment Capacity Check	4
4.	Shear Capacity Check	5
5.	Shear Wall Analysis and Design – spWall Software	7
6.	Design Results Comparison and Conclusions	16

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

Reinforced Concrete Mechanics and Design, 7th Edition, 2016, James Wight, Pearson, Example 18-2

Design Data

 $f_c' = 4,000$ psi normal weight concrete

 $f_y = 60,000 \text{ psi}$

Slab thickness = 7 in.

Wall thickness = 10 in.

Wall length = 18 ft

Vertical reinforcement: #5 bars at 18 in. on centers in each face ($A_{s, vertical} = #5 @ 18 in.$)

Horizontal reinforcement: #4 bars at 16 in. on centers in each face (As, horizontal = #4 @ 16 in.)

1. Minimum Reinforcement Requirements (Reinforcement Percentage and Spacing)

1.1. Horizontal Reinforcement Check

$$\rho_{t} = \frac{A_{v,horizontal}}{h \times s_{2}} = \frac{2 \times 0.2}{10 \times 16} = 0.0025$$

$$\rho_{t} = 0.0025 \ge \rho_{t,\min} = 0.0025 \text{ (o.k)}$$

$$\frac{ACI 318-14 (11.6.2(b))}{ACI 318-14 (11.6.2(b))}$$

$$s_{t,\max} = \text{smallest of} \begin{cases} 3 \times h \\ 18 \text{ in.} \\ l_{w} / 5 \end{cases} = \text{smallest of} \begin{cases} 3 \times 10 \\ 18 \text{ in.} \\ 18 / 5 \end{cases} = \text{smallest of} \begin{cases} 30 \text{ in.} \\ 18 \text{ in.} \\ 43.2 \text{ in.} \end{cases} = 18 \text{ in.}$$

$$\frac{ACI 318-14 (11.7.3.1)}{ACI 318-14 (11.7.3.1)}$$

$$s_{t, provided} = 16 \text{ in.} < s_{t, \text{max}} = 18 \text{ in.} \text{ (o.k)}$$

1.2. Vertical Reinforcement Check

$$\rho_l = \frac{A_{v,vertical}}{h \times s_1} = \frac{2 \times 0.31}{10 \times 18} = 0.00344$$
ACI 318-14 (2.2)

$$\rho_{l,\min} = \text{greater of} \begin{cases} 0.0025 + 0.5 \left(2.5 - \frac{h_w}{l_w} \right) (\rho_t - 0.0025) \\ 0.0025 \end{cases}$$
 ACI 318-14 (11.6.2(a))

$$\rho_{l,\min} = \text{greater of} \left\{ \begin{array}{l} 0.0025 + 0.5 \left(2.5 - \frac{h_w}{l_w} \right) (0.0025 - 0.0025) \\ 0.0025 \end{array} \right\} = \text{greater of} \left\{ \begin{array}{l} 0.0025 \\ 0.0025 \end{array} \right\} = 0.0025$$

$$\rho_{l} = 0.00344 \ge \rho_{l,\min} = 0.0025 \text{ (o.k)} \qquad \underline{ACI 318-14 (11.6.2(a))}$$

$$s_{l,\max} = \text{smallest of} \begin{cases} 3 \times h \\ 18 \text{ in.} \\ l_{w} / 3 \end{cases} = \text{smallest of} \begin{cases} 3 \times 10 \\ 18 \text{ in.} \\ 18 / 3 \end{cases} = \text{smallest of} \begin{cases} 30 \text{ in.} \\ 18 \text{ in.} \\ 72 \text{ in.} \end{cases} = 18 \text{ in.} \qquad \underline{ACI 318-14 (11.7.2.1)} \end{cases}$$

$$s_{l, provided} = 18 \text{ in.} \le s_{l, \max} = 18 \text{ in.} (\text{o.k})$$

CONCRETE SOFTWARE SOLUTIONS

2. Neutral Axis Depth Determination

$$M_{have} = 35 \times 54 + 32 \times 43.5 + 26 \times 33 + 18 \times 22.5 + 10 \times 12 = 4,670$$
 kip-ft

The load factor for strength-level wind force = 1.0

$$M_{u,base} = 1.0 \times 4,670 = 4,670$$
 kip-ft

$$N_u = 0.9 \times N_D = 0.9 \times (30 + 50 + 50 + 50) = 207 \text{ kips}$$
 ACI 318-14 (Eq.5.3.1f)

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c - 4000)}{1000} = 0.85 - \frac{0.05 \times (4000 - 4000)}{1000} = 0.85$$

ACI 318-14 (Table 22.2.2.4.3)

$$\omega = \rho_l \frac{f_y}{f_c} = 0.00344 \times \frac{60}{4} = 0.0516$$

$$\alpha = \frac{N_u}{h \times l_w \times f_c} = \frac{207}{10 \times 216 \times 4} = 0.0240$$

$$c = \left(\frac{\alpha + \omega}{0.85\beta_1 + 2\omega}\right) l_w = \left(\frac{0.0240 + 0.0516}{0.85 \times 0.85 + 2 \times 0.0516}\right) \times 216 = 19.8 \text{ in.}$$

Assume the effective flexural depth (d) is approximately equal to $0.8l_w = 173$ in. ACI 318-14 (11.5.4.2)

c = 19.8 in. $\ll d = 173$ in. \rightarrow Tension controlled section

$$\therefore \phi = 0.90$$

ACI 318-14 (Table 21.2.2)

3. Moment Capacity Check

$$A_{st} = A_{v,vertical} \frac{l_w}{s_{l,provided}} = 2 \times 0.31 \times \frac{216}{18} = 7.44 \text{ in.}^4$$
$$T = A_{st} \times f_y \left(\frac{l_w - c}{l_w}\right) = 7.44 \times 60 \times \left(\frac{216 - 19.8}{216}\right) = 405 \text{ kips}$$

Taking into account the applied axial force and summing force moments about the compression force (C), the moment capacity can be computed as follows:

$$M_{n} = T\left(\frac{l_{w}}{2}\right) + N_{u}\left(\frac{l_{w} - c}{2}\right) = 405\left(\frac{216}{2}\right) + 207\left(\frac{216 - 19.8}{2}\right) = 64,000 \text{ kips-in.} = 5,340 \text{ kips-ft}$$

$$\phi M_n = 0.9 \times 5,340 = 4,800$$
 kips-ft > $M_u = 4,670$ kips-ft

Since ϕM_n is greater than M_u , the wall has adequate flexural strength.

To further confirm the moment capacity is adequate with detailed consideration for the axial compression, an interaction diagram using <u>spColumn</u> can be created easily as shown below for the wall section. The location of the neutral axis, maximum tensile strain, and the phi factor can all be also verified from the <u>spColumn</u> model results output parameters. As can be seen from the interaction diagram a comprehensive view of the wall behavior for any combination of axial force and applied moment.

For a factored axial and moment of 207 kips and 4670 kip-ft the interaction diagram shows a capacity factor of 1.139 ($\phi M_n = 5,320$ kip-ft for $\phi P_n = P_u$), see Figures 11 and 12.

4. Shear Capacity Check

 $V_{\mu} = 35 + 32 + 26 + 18 + 10 = 121$ kips

$$V_{c} = \text{lesser of} \begin{cases} 3.3 \times \lambda \times \sqrt{f_{c}^{'}} \times h \times d + \frac{N_{u} \times d}{4 \times l_{w}} & \text{(d)} \\ \\ 0.6 \times \lambda \times \sqrt{f_{c}^{'}} + \frac{l_{w} \left(1.25 \times \lambda \times \sqrt{f_{c}^{'}} + 0.2 \frac{N_{u}}{l_{w} \times h}\right)}{\frac{M_{u}}{V_{u}} - \frac{l_{w}}{2}} \end{bmatrix} \times h \times d & \text{(e)} \end{cases}$$

ACI 318-14 (Table 11.5.4.6)

$$V_{c} = \text{lesser of} \begin{cases} 3.3 \times 1.0 \times \sqrt{4,000} \times 10 \times 173 + \frac{207,000 \times 173}{4 \times 216} \\ \\ 0.6 \times 1.0 \times \sqrt{4,000} + \frac{216 \times \left(1.25 \times 1.0 \times \sqrt{4,000} + 0.2\frac{207,000}{216 \times 10}\right)}{\frac{3,580}{121} - \frac{216}{2}} \end{bmatrix} \times 10 \times 173 \end{cases}$$

$$V_{c} = \text{lesser of} \begin{cases} 402 \text{ kips} \\ 214 \text{ kips} \end{cases} = 214 \text{ kips} \end{cases}$$

Where M_u/V_u ratio used in equation (e) was calculated at the critical section above the base of the wall (see Figure 1).

distance to the critical section = smaller of
$$\begin{cases} \frac{l_w}{2} \\ \frac{h_w}{2} \\ \text{one story height} \end{cases}$$
distance to the critical section = smaller of
$$\begin{cases} \frac{18}{2} = 9 \text{ ft} \\ \frac{54}{2} = 27 \text{ ft} \\ 12 \text{ ft} \end{cases} = 9 \text{ ft}$$

ACI 318-14 (11.5.4.7)

The factored moment at the ultimate section is equals to:

$$M_u = M_{u,base} - V_{u,base} \times \frac{l_w}{2} = 4,670 - 121 \times 9 = 3,580$$
 kip-ft

 $\phi V_c = \phi \times V_c = 0.75 \times 214 = 161$ kips

Where $\phi = 0.75$ for shear

ACI 318-14 (Table 21.2.1)

 $\phi V_c = 161 \text{ kips} > V_u = 121 \text{ kips}$

Thus, it is not required to calculate the additional shear strength provided by the horizontal reinforcement (V_s)

 $0.5 \times \phi V_c = 80.5 \text{ kips} < V_u = 121 \text{ kips}$

Since $0.5\phi V_c$ is less than V_u , ρ_l shall be at least the greater of Equation 11.6.2 in the Code and 0.0025 but need not to exceed ρ_t required by Equation 11.5.4.8. and ρ_t shall be at least 0.0025. **ACI 318-14 (11.6.2)**

(Those requirements were checked in step 1).

CONCRETE SOFTWARE SOLUTIONS

5. Shear Wall Analysis and Design - spWall Software

<u>spWall</u> is a program for the analysis and design of reinforced concrete shear walls, tilt-up walls, precast wall and insulate concrete form (ICF) walls. It uses a graphical interface that enables the user to easily generate complex wall models. Graphical user interface is provided for:

- Wall geometry (including any number of openings and stiffeners)
- Material properties including cracking coefficients
- Wall loads (point, line, and area),
- Support conditions (including translational and rotational spring supports)

spWall uses the Finite Element Method for the structural modeling, analysis, and design of slender and nonslender reinforced concrete walls subject to static loading conditions. The wall is idealized as a mesh of rectangular plate elements and straight line stiffener elements. Walls of irregular geometry are idealized to conform to geometry with rectangular boundaries. Plate and stiffener properties can vary from one element to another but are assumed by the program to be uniform within each element.

Six degrees of freedom exist at each node: three translations and three rotations relating to the three Cartesian axes. An external load can exist in the direction of each of the degrees of freedom. Sufficient number of nodal degrees of freedom should be restrained in order to achieve stability of the model. The program assembles the global stiffness matrix and load vectors for the finite element model. Then, it solves the equilibrium equations to obtain deflections and rotations at each node. Finally, the program calculates the internal forces and internal moments in each element. At the user's option, the program can perform second order analysis. In this case, the program takes into account the effect of in-plane forces on the out-of-plane deflection with any number of openings and stiffeners.

In <u>spWall</u>, the required flexural reinforcement is computed based on the selected design standard (ACI 318-14 is used in this example), and the user can specify one or two layers of shear wall reinforcement. In stiffeners and boundary elements, <u>spWall</u> calculates the required shear and torsion steel reinforcement. Shear wall concrete strength (in-plane and out-of-plane) is calculated for the applied loads and compared with the code permissible shear capacity.

For illustration and comparison purposes, the following figures provide a sample of the input modules and results obtained from an <u>spWall</u> model created for the reinforced concrete shear wall in this example.

sowall		
Project	Properties Supports Loads Load Combinations	
Define		
Assign	Point Loads	Point Load
Options	Label Load Case Eccentricity (in)	Linear Area Load
	Forces (kips) Moments (k-tt)	Uniform Line Load
	Px Py Pz Mx My Mz	
	Label Case Px Py Pz Mx My Mz Eccentricity D1 A 0.000 -50.000 0.000 0.000 0.000 0.000 Add	
	D2 A 0.000 -30.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 L1 B 0.000 -25.000 0.000 0.000 0.000 0.000 Delete	
	L2 B 0.000 -15.000 0.000 0.000 0.000 0.000 0.000 U000 U0	
	W2 D 18:000 0:000	
	WS D 35.000 0.000 0.000 0.000 0.000 0.000	
	K	
		1

Figure 2 – Defining Loads for Shear Wall (spWall)

Figure 3 – Assigning Boundary Conditions for Shear Wall (spWall)

Figure 4 – Factored Axial Forces Contour Normal to Shear Wall Cross-Section (spWall)

Figure 5 – Shear Wall Lateral Displacement Contour (spWall)

Spwall Project Define	Run Solver View Results View Wall Contours View	Forces Diagrams Reports
Assign Solve Options	Diagram Scale: Image: Show Values Min/Max Only	Stiffener internal forces Wall cross-sectional forces B. Wuy Wux W.Vuz W.Muy Muy Wall concrete shear strength
	Z X Reset Zoom In Zoom Out Pan Normal View X=9, Y=33	Max. Value: -27.000 kips Min. Value: -207.000 kips

Figure 6 – Shear Wall Axial Load Diagram (spWall)

spwall					
Project Define	Run Solver View Results View Wall Contours View	Forces Diagrams Reports			
Assign Solve	View Diagrams	Stiffener internal forces Hore and forces Hore and forces			
Options	Diagram Scale: 1 Show Values Min/Max Only	 Nuy U8 Vux Mux Muy Muz Muz Wall concrete shear strength 			
		Max. Value: 121.000 kips Min. Value: 35.000 kips			
	Z X Reset Zoom In Zoom Out Pan Normal View X=7, Y=47				

Figure 7 – In-plane Shear Diagram (spWall)

spwall		
Project Define	Run Solver View Results View Wall Contours View	Forces Diagrams Reports
Assign Solve	View Diagrams	⊕ Wall cross-sectional forces
Options	Diagram Scale: 1 🔽 Show Values 🔽 Min/Max Only	n Nuy ∎- Vux
		 ⊕. Mux ⊕. Muz ⊕. Wall concrete shear strength
		Max. Value: -0.000 k-ft
	Z X Reset Zoom In Zoom Out Pan Pan X=19, Y=39	Min. Value: -4665.000 k-ft

Figure 8 – Shear Wall Moment Diagram (spWall)

Page 1

08-09-2017, 09:25:21 AM

STRUCTUREPOINT - spWall v5.01 (TM) Licensed to: StructurePoint, License ID: 66184-1055153-4-2C6B6-2C6B6 C:\TSDA\Structural Wall Under Lateral Load\Structural Wall.wal

Envelope | Plate reinforcement

18

2 Horizontal

Coordinate System: Global

Units: Total required area of steel (As): in^2/ft Bending moment (Mu): k-ft/ft, axial force (Nu): klf

Elem Curtains Direction Mu (x/y)Nu (x/v) Ld combo As (x/v) ro(%) Tie 2 Horizontal 0.0000e+000 2.9550e+001 U8 Vertical 0.0000e+000 7.7378e+001 U8 1 5.53e-001 0.46 1.45e+000 1.21 2 2 Horizontal 0.0000e+000 1.8772e+001 U8 3.51e-001 0.29 1.38e+000 2.91e-001 7.3781e+001 U8 Vertical 0.0000e+000 1.15 0.0000e+000 1.5581e+001 U8 3 2 Horizontal 0.24 1.02e+000 0.85 Vertical 0.0000e+000 5.4554e+001 U8 1.2902e+001 U8 4.2835e+001 U8 0.0000e+000 4 2 Horizontal 2.41e-001 0.20 8.01e-001 0.67 0.20 0.0000e+000 Vertical 2 Horizontal 2.40e-001 0.20 6.11e-001 0.51 5 0.0000e+000 1.0669e+001 U8 Vertical 0.0000e+000 3.2675e+001 U8 6 2 Horizontal 0.0000e+000 8.7408e+000 U8 2.40e-001 0.20 4.37e-001 0.36 2.40e-001 0.20 0.0000e+000 2.3359e+001 U8 0.0000e+000 7.0193e+000 U8 Vertical 7 2 Horizontal 2.73e-001 0.23 Vertical 0.0000e+000 1.4611e+001 U8 0.0000e+000 5.4510e+000 U8 8 2 Horizontal 0.20 .40e-00 Vertical 0.0000e+000 6.2406e+000 U8 0.0000e+000 2.6129e+000 U8 1.44e-001 0.12 9 2 Horizontal 2.40e-001 0.20 1.44e-001 0.12 0.0000e+000 -1.2546e+001 U8 Vertical 0.0000e+000 -8.4802e+000 U8 0.0000e+000 -2.0955e+001 U8 0.0000e+000 -1.0370e+001 U8 2 Horizontal 2.40e-001 0.20 1.44e-001 0.12 Vertical 2.40e-001 11 2 Horizontal 0.20 0.0000e+000 -2.9458e+001 U8 0.0000e+000 -1.2361e+001 U8 1.44e-001 0.12 Vertical 12 2 Horizontal 0.20 2.40e-001 1.44e-001 0.12 Vertical 0.0000e+000 -3.8160e+001 U8 0.0000e+000 -1.4490e+001 U8 0.0000e+000 -4.7212e+001 U8 13 2 Horizontal 2.40e-001 1.44e-001 0.20 Vertical 0.12 14 2 Horizontal 0.0000e+000 -1.6819e+001 U8 2.40e-001 0.20 0.0000e+000 -5.6863e+001 U8 1.44e-001 0.12 Vertical 0.0000e+000 -1.9473e+001 U8 15 2 Horizontal 2.40e-001 0.20 Vertical 0.0000e+000 -6.7480e+001 U8 0.0000e+000 -2.2634e+001 U8 1.44e-001 0 12 16 2 Horizontal 0.20 2.40e-00 Vertical 0.0000e+000 -8.0022e+001 U8 1.44e-001 0.12 17 0.0000e+000 -2.6373e+001 U8 2 Horizontal 2.40e-001 1.44e-001 0.20 0.0000e+000 -1.0247e+002 U8 Vertical 0.12

$\sum\!A_{s,vertical}=7.56~in.^2$

08-09-2017, 09:29:15 AM

Page 1

Figure 9 – Shear Wall Vertical Reinforcement (spWall)

2.40e-001

1,44e-001

0.20

0.12

STRUCTUREPOINT - spWall v5.01 (TM) Licensed to: StructurePoint, License ID: 66184-1055153-4-2C6B6-2C6B6 C:\TSDA\Structural Wall Under Lateral Load\Structural Wall.wal

Envelope | Wall concrete shear strength | In-plane shear

Vertical 0.0000e+000 -1.0437e+002 U8

0.0000e+000 -4.0107e+001 U8

Coordinate System: Global Units: Y-coordinate: ft (+) Horizontal cross-section above Y-coordinate (-) Horizontal cross-section below Y-coordinate Force (Nuy, Vux): kips Moment (Muz): k-ft Wall concrete shear strength (Vcx): kips __Cross-sectional Forces__ _Cross-section_ Strength No. Y-coordinate Ld_combo Nuy Muz Vux Phi*Vcx ____ ____ -2.0700e+002 -4.6650e+003 1.2100e+002 1.6393e+002 # -2.0700e+002 3.5760e+003 1.2100e+002 1.6393e+002 # 1+ 0.000 U8 19+ 9.000 U8 Notes: # - Shear force Vux exceeds 0.5*Phi*Vcx

Figure 10 - Concrete Shear Strength and Shear Wall Cross-Sectional Forces (spWall)

Table 1 – Comparison of Shear Wall Analysis and Design Results									
G 1 .:	V	Vall Cross-	-Sectional	Forces	Strength	Required A _s	Provided A _s		
Solution	M _u (kip-ft)	N _u (kips)	V _u (kips)	M _{u@critical Section} (kip-ft)	φV _c (kips)	A _{s,vertical} (in. ²)	A _{s,vertical} (in. ²)		
Hand	4,670	207	121	3,580	161	Governed by Min.	7.44		
Reference	4,670	207	121	3,580	161	Governed by Min.	7.44		
spWall	4,665	207	121	3,576	164	Governed by Min.	7.56		

6. Design Results Comparison and Conclusions

The results of all the hand calculations and the reference used illustrated above are in precise agreement with the automated exact results obtained from the <u>spWall</u> program. It is worth noting that the minimum area of steel is governed by the minimum reinforcement ratio stipulated by the code. The same can be seen in <u>spWall</u> output for elements 9 through 18.

In the hand calculations and the reference, a simplified procedure to calculate the nominal flexural strength was used (A. E. Cardenas et al.). In this procedure, several broad assumptions are made to avoid tedious detailed calculations:

- All steel in the tension zone yields in tension.
- All steel in the compression zone yields in compression.
- The tension force acts at mid-depth of the tension zone.
- The total compression force (sum of steel and concrete contributions) acts at mid-depth of the compression zone.

To investigate the exact shear wall cross section capacity, a detailed interaction diagram can be easily generated by <u>spColumn</u> conforming to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility.

For illustration and comparison purposes, following figures provide a sample of the input and output of the exact results obtained from an <u>spColumn</u> model created for the reinforced concrete shear wall in this example. <u>spColumn</u> calculates the exact values of strain at each layer of steel (in tension and compression zones) with exact location of the total tension and compression forces leading to exact value for nominal and design strengths (axial and flexural strengths).

Figure 11 - Shear Wall Interaction Diagram (X-Axis, In-Plane) (spColumn)

Page 2 08/07/17 01:45 PM

General Info	rmation:							
File Name:	C:\TSDA\S	tructural Wall	Wall Unde	er Latera	l Load\spC	olumn\Struc	rtural Wall	.col
Column:	Shoor Wall	Wall		Fraire	ST. CD			
Code:	ACI 318-14			Units:	English			
Run Option Run Axis:	: Investig X-axis	ation		Slende: Column	rness: Not Type: Str	considered	1	
Material Pro	perties:				-11			
Concrete:	Standard			Steel:	Standard			
I'C = 4	KS1			ry	= 60 KS1			
fo - 2	4 kai			Eng of	- 0 00206	91 997 in/in		
Ene 11 = 0	003 in/in			Pbs_Ac	- 0.00208	657 IN/IN		
Beta1 = 0.	85							
Section:								
Exterior P	oints							
No.	X (in)	Y (in)	No.	X (in)	Y (in)	No.	X (in)	Y (in)
1	-5.0	-108.0	2	5.0	-108.0	3	5.0	108.0
4	-5.0	108.0						
Gross sect	ion area,	Ag = 216	0 in^2	_				
Ix = 8.39	808e+006 i	n^4		Iy =	18000 in^4			
rx = 62.3	538 in			ry =	2.88675 in			
Xo = 0 in				Yo =	-0 in			
Reinforcemen	.t:							
Bar Set: A	STM A615							
Size Diam	(in) Area	(in^2)	Size Diam	(in) Are	a (in^2)	Size Diam	(in) Area	(in^2)
# 3	0.38	0.11	# 4	0.50	0.20	# 5	0.63	0.31
# 6	0.75	0.44	# 7	0.88	0.60	# 8	1.00	0.79
# 9 # 14	1.13	2 25	# 10 # 18	1.27	1.27	# 11	1.41	1.56
Confinemen phi(a) = 0	t: Tied; # .8, phi(b	3 ties wi) = 0.9,	th #10 bas phi(c) =	cs, #4 w: 0.65	ith larger	bars.		
Pattern: I	rregular							
Total stee	l area: As	= 8.06 i	n^2 at rho	o = 0.37€	(Note: rh	o < 0.50%)		
Minimum cl	ear spacin	g = 7.37	in					
Area in^2	X (in)	Y (in)	Area in^2	X (in)	Y (in)	Area in^2	X (in)	Y (in)
0.31	-4.0	107.0	0.31	4.0	107.0	0.31	4.0	89.2
0.31	4.0	71.3	0.31	4.0	53.5	0.31	4.0	35.7
0.31	4.0	17.8	0.31	4.0	-0.0	0.31	4.0	-17.8
0.31	4.0	-35.7	0.31	4.0	-53.5	0.31	4.0	-71.3
0.31	4.0	-89.2	0.31	4.0	-107.0	0.31	-4.0	-107.0
0.31	-4.0	-03.2	0.31	-4.0	-71.3	0.31	-4.0	-53.5
0.31	-4.0	17 8	0.31	-4.0	-1/.8	0.31	-4.0	52 5
0.31	-4.0	71.3	0.31	-4.0	89.2	0.01	1.0	00.0
STRUCTUREPOINT - spColumn v5.50 (TM) Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\TSDA\Structural Wall Under Lateral Load\spColumn\Structural Wall.col								
Factored Loads and Moments with Corresponding Capacities:								
	Pu	Mux	Ph	iMnx PhiM	n/Mu NA de	pth Dt dept	h eps_t	Phi
No.	kip	k-ft	1	k-ft 		in i	in	

STRUCTUREPOINT - spColumn v5.50 (TM) Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\TSDA\Structural Wall Under Lateral Load\spColumn\Structural Wall.col

1 207.00 4670.00 5319.18 1.139 20.73 215.00 0.02811 0.900

Figure 12 - Load & Moment Capacities Output from spColumn

Page 3 08/07/17 01:45 PM

Figure 13 - Shear Wall Interaction Diagram (Y-Axis, Out-of-Plane) (spColumn)

100%

<u>spColumn</u>

summarized below:									
Table 2 – Comparison of Flexural Capacity Based on Method of Solution									
Solution Method	c, in.	ε_t , in./in.	φM _n , kip-ft	(Calculated/Exact) _{Capacity}					
Hand	19.80		4,670	88%					
Reference	19.80		4,670	88%					
spWall			5,344*	100%					

Using the <u>spColumn</u> results output, further comparison can be made for the shear wall capacity parameters as summarized below:

The last column in the table above compares the hand calculated capacity estimated by approximate methods to the exact values generated by <u>spWall</u> and <u>spColumn</u>. The impact of simplifying assumptions is illustrated in the figure below showing the value of incorporating the exact value and location of steel and concrete strains and forces.

* Calculated from spWall plate reinforcement by summing the capacity of each element along the wall cross-section

5,319

0.02811

Hand Calculation and Reference

20.73

Figure 15 - Strains, Forces, and Moment Arms for simplified and Actual Methods