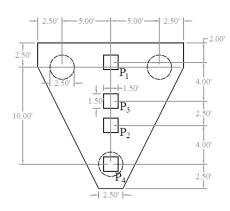
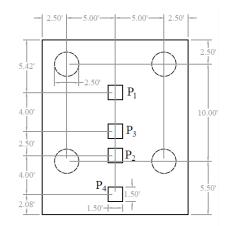
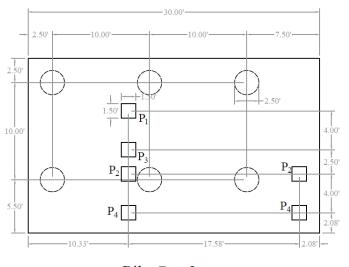

Industrial Plant Pipe Rack Foundations Analysis and Design





Industrial Plant Pipe Rack Foundations Analysis and Design


Industrial pipe racks typically support pipes, power cables and instrument cable trays in petrochemical, chemical, paper mills and power plants. Occasionally, pipe racks may also support mechanical equipment, vessels and valve access platforms. Main pipe racks generally transfer process material between equipment and storage or utility areas where operation specific load cases and temperature effect often complicates the structural analysis and the resulting foundation reactions. Storage racks found in warehouses are not pipe racks, even if they store lengths of pipe. This case study focuses on the design of pipe rack foundations using the engineering software program <u>spMats</u>. All the information provided by the sturcutral engineer regarding the pipe rack foundations are shown in the following figure and design data section and will serve as input for foundation design. Because of poor soil conditions at the site and tower height, significant uplift is expected and a pile supported foundation is selected to resist the design overturning moments. 30" diameter piles are assembled in pile caps as shown in the following figures.

Pile Cap 1

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

spMats Engineering Software Program Manual v8.50, StucturePoint LLC., 2016

Design Data

Concrete Piers

Size = 1.5 ft x 1.5 ft

Pile Cap Foundations

 f_c ' = 3,000 psi

 $f_y = 60,000 \text{ psi}$

Thickness = 3 ft

Clear Cover = 2 in.

Concrete Piles

 f_c ' = 4,000 psi f_y = 60,000 psi Diameter = 2.5 ft Clear Cover = 3 in. Length = 33 ft Pile embedment = 6 in.

Foundation Loads

Load Case	Load*, kips								
Load Case	\mathbf{P}_1	P ₂	P ₃	P4					
Dead	-6**	65	165	4					
Live	251	35	85	-45**					
Wind	40	-160**	-35**	160					
 Load locations are sho ** Negative values indica 		, figure							

Contents

1.	Foundation Analysis and Design – spMats Software	1
2.	Two-way Punching Shear Check	11
3.	Pile Reactions	13
4.	Pile Cap Model Statistics	15
5.	Column and Pile Design - spColumn	16
6.	2D/3D Viewer	20
7.	Tied vs. Spiral Confinement	21

CONCRETE SOFTWARE SOLUTIONS

1. Foundation Analysis and Design – spMats Software

<u>spMats</u> uses the Finite Element Method for the structural modeling, analysis and design of reinforced concrete slab systems or mat foundations subject to static loading conditions.

The slab, mat, or footing is idealized as a mesh of rectangular elements interconnected at the corner nodes. The same mesh applies to the underlying soil with the soil stiffness concentrated at the nodes. Slabs of irregular geometry can be idealized to conform to geometry with rectangular boundaries. Even though slab and soil properties can vary between elements, they are assumed uniform within each element. Piles are modeled as springs connected to the nodes of the finite element model. Unlike for springs, however, punching shear check is performed around piles.

For illustration and purposes, the following figures provide a sample of the input modules and results obtained from spMats models created for the industrial plant pipe rack foundations (pile caps) in this example.

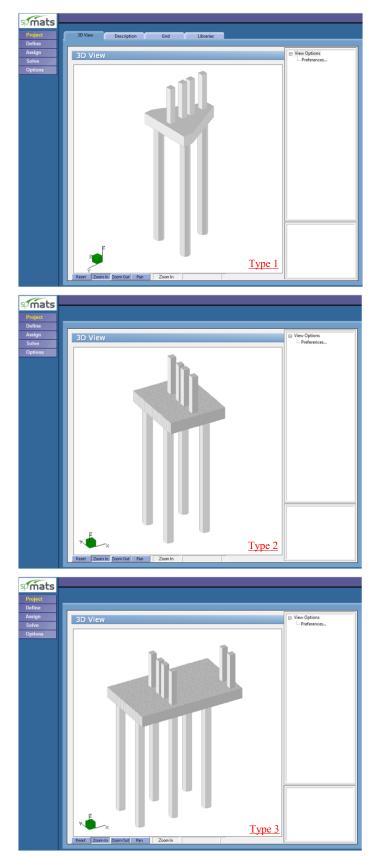


Figure 2 - Pipe Rack Foundation Model - 3D Views

CONCRETE SOFTWARE SOLUTIONS

Project	Properties Restraints Load Combinations Loads	
Project Define Assign Solve Options	Properties Restraints Load Combinations Loads Piles Label Spring Constant (kli) Pile 2280.65 Label Add Pile Add Edit Delete Modify Add/Edit Pile ?************************************	Nodal Springs

Figure 3 – Defining Piles

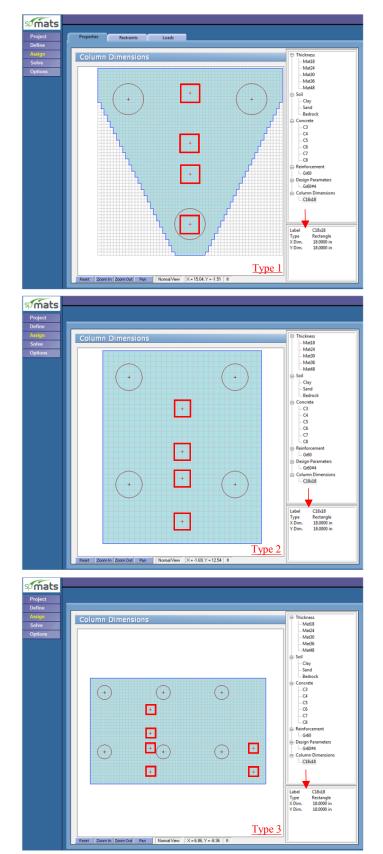


Figure 4 – Assigning Concrete Piers

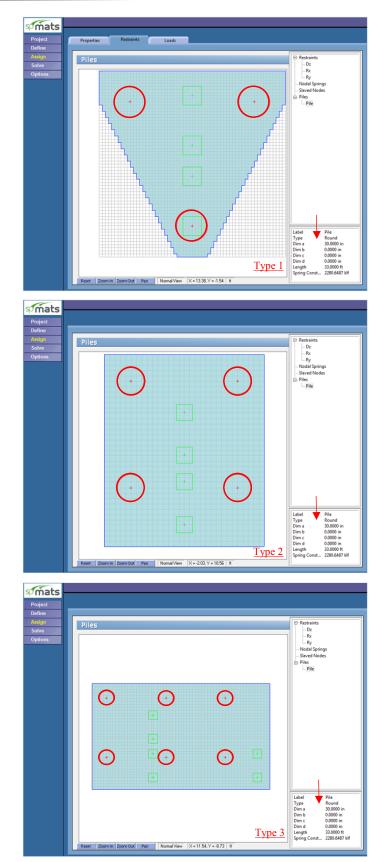


Figure 5 – Assigning Piles

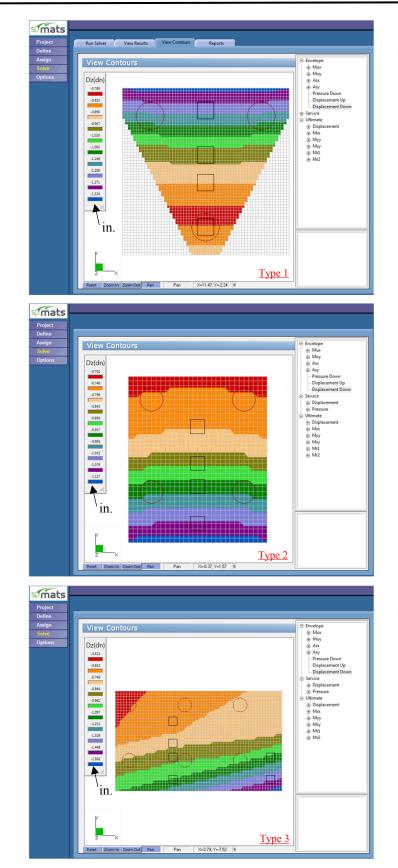


Figure 6 - Vertical Displacement Contours (Note cantilevered corner displacement)

Figure 7 – Moment Contours along Y-Axis

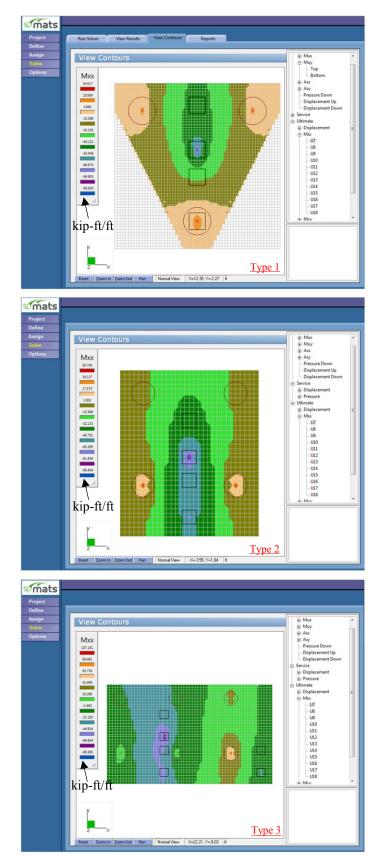


Figure 8 - Moment Contours along X-Axis - Complete Model

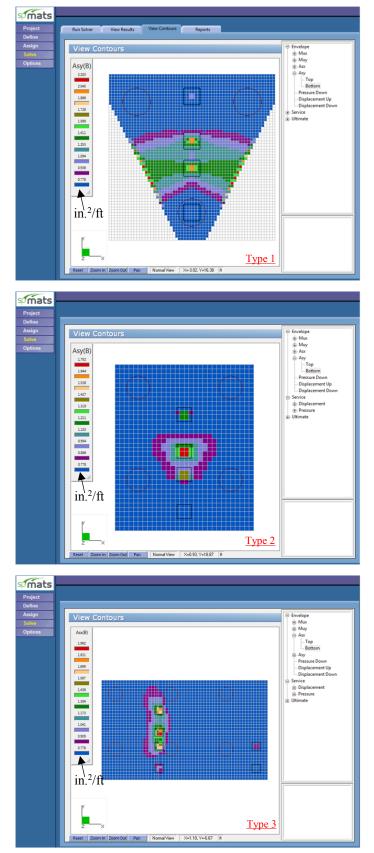


Figure 9 - Required Reinforcement Contours along Y Direction

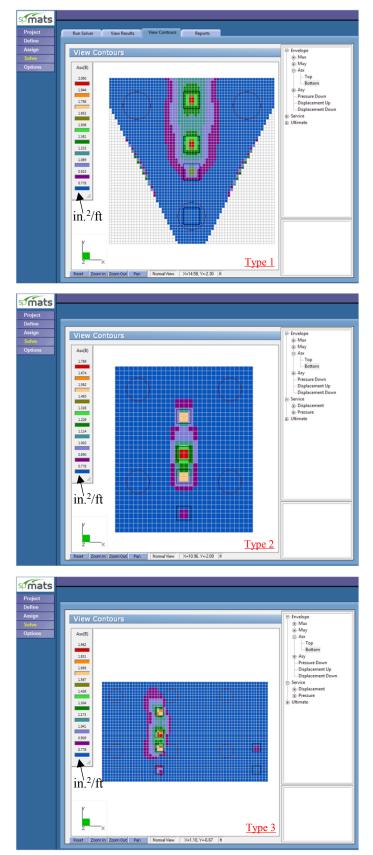


Figure 10 - Required Reinforcement Contours along X Direction

CONCRETE SOFTWARE SOLUTIONS

2. Two-way Punching Shear Check

According to ACI 312-14 (R13.2.7.2), if shear perimeters overlap, the modified critical perimeter should be taken as that portion of the smallest envelope of individual shear perimeters that will actually resist the critical shear for group under consideration. <u>spMats</u> reports standard shear perimeter for three conditions (interior, edge, and corner) only considering adequate spacing and edge distance is provided to prevent overlapping or truncated shear perimeter.

B6 - Punching Shear Around Columns (Ultimate Load Combinations): Type 1	B6 - Punching Shear Around Columns (Ultimate Load Combinations): Type 2
Units> Applied Shear Force Vu (kips), Applied Moments Mux, Muy (k-ft) Factored Shear Stress vu (psi), Factored Shear Resistance Fhi*vc (psi) Concrete Strength ffc (psi), distances X Offett, Y_Offset (ft) Average depth (in), Dimensions Bx, By (ft) Area (in 2), Jxx, Jyy, Jxy (in*4)	Units> Applied Shear Force Yu (kips), Applied Moments Max, May (k-ft) Factored Shear Stress vu (psi), Factored Shear Resistance Phivec (psi) Concrete Strength f'c (psi), distances X_Offset, Y_Offset (ft) Average depth (in, Dimensions Bx, By (ft) Area (in^2), Oxx, Jyy, Gy (in'4)
Geometry of Resisting Area	Geometry of Resisting Area
Column Average Dimensions Centroid Node Label Location Depth Bx By X Offset Y Offset	Column Average Dimensions Centroid Node Label Location Depth Bx By X_Offset Y_Offset
171 CLBx18 Inner 27.75 3.81 3.81 -0.00 -0.00 643 CLBx18 Inner 27.75 3.81 3.81 -0.00 -0.00 1068 CLBx18 Inner 27.75 3.81 3.81 -0.00 -0.00 1953 CLBx18 Inner 27.75 3.81 3.81 -0.00 -0.00	140 C10x10 Inner 27.75 3.01 3.01 -0.00 -0.00 300 C10x10 Inner 27.75 3.01 3.01 -0.00 -0.00 543 C10x10 Inner 27.75 3.01 3.01 -0.00 -0.00 791 C10x10 Inner 27.75 3.01 3.01 -0.00 0.00
Properties of Resisting Area	Properties of Resisting Area
Node Column Label Area Jxx Jyy Jxy	Node Column Label Area Jxx Jyy Jxy
171 C18x18 5078.25 1934456.00 1934456.00 -0.00 643 C18x18 5078.25 1934456.00 1934456.00 -0.00 1068 C18x18 5078.25 1934456.00 1934456.00 -0.00 1953 C18x18 5078.25 1934456.00 1934456.00 0.00	140 C18x18 5078.25 1934456.00 934456.00 0.00 380 C18x18 5078.25 1934456.00 1934456.00 0.00 543 C18x18 5078.25 1934456.00 1934456.00 0.00 791 C18x18 5078.25 1934456.00 1934456.00 0.00
Ultimate Load Combination: U7	Ultimate Load Combination: U7
Factored Applied Forces:	Factored Applied Forces:
Node Column Label Vu Mux Gamma_X Muy Gamma_Y	Node Column Label Vu Mux Gamma_X Muy Gamma_Y
171 C18x18 86.92 0.0 0.400 0.0 0.400 643 C18x18 2.00 -0.0 0.400 0.0 0.400 1068 C18x18 -180.50 0.0 0.400 0.0 0.400 1953 C18x18 -12.60 0.0 0.400 0.0 0.400	140 C18x18 -94.80 -0.0 0.400 0.0 0.400 388 C18x18 2.00 -0.0 0.400 0.0 0.400 543 C18x18 -180.50 -0.0 0.400 0.0 0.400 791 C18x18 -12.80 0.0 0.400 0.0 0.400
Factored Stress and Capacity:	Factored Stress and Capacity:
Critical Point	Node Column Label vu f'c Phi*vc X Offset Y Offset Status
171 C18x18 17.12 3000.00 164.32 1.91 1.91 safe 643 C18x18 0.39 3000.00 164.32 1.91 -1.91 safe 1068 C18x18 -35.54 3000.00 164.32 1.91 -1.91 safe 1953 C18x18 -2.52 3000.00 164.32 1.91 -1.91 safe	140 C18x18 -16.70 3000.00 164.32 1.91 1.91 Safe 368 C18x18 0.39 3000.00 164.32 1.91 -1.91 safe 543 C18x18 -35.54 3000.00 164.32 1.91 1.91 safe 791 C18x18 -2.52 3000.00 164.32 1.91 1.91 safe

	ear Force V						
	hear Stress						(psi)
Concrete St					Y_Offset	t (ft)	
Average dep Area (in^2)	oth (in), D			(11)			
Area (In 2)	, ozz, ogg	0X3 (111	47				
Geometry of Resisting	T Area						
Node Label	ر	verage _	Dimen:	sions	Cent	troid	
Node Label	Location	Depth	Bx	By	X_Offset	Y_Offset	
266 C18x18	Inner	27.75	3.81	3.81	0.00	-0.00	
200 C10x10 301 C10x10 754 C10x10 789 C10x10	Inner	27.75	3.81	3.81	0.00	-0.00	
754 CI8X18	Inner	27.75	3.81	3.81	0.00	-0.00	
1059 C18x18	Inner	27.75	3.01	3.01	0.00	-0.00	
1547 C18x18	Inner Inner Inner Inner Inner Inner	27.75	3.01	3,01	0.00	-0.00	
1547 010210	111101	27.75	3.04	5.01	0.00	-0.00	
Properties of Resist:							
Node Column Label	Area	Jy	x	JYY	31	кy	
266 C18x18	5078.2 5078.2 5078.2 5078.2 5078.2 5078.2 5078.2	19344	56.00	1934456.0	0	0.00	
301 C18x18	5078.2	19344	56.00	1934456.0	0	0.00	
754 C18x18	5078.2	19344	56.00	1934456.0	0	0.00	
789 C18x18	5078.2	19344	56.00	1934456.0	0	0.00	
1059 C18x18 1547 C18x18	5078.2) 19344	56.00	1934456.0	0	0.00	
1547 C18X18	5078.23	19344	56.00	1934450.0	0	0.00	
Ultimate Load Combina	ation: U7						
Factored Applied Fo	proes:						
		N					amma N
Node Column Labe							
266 C18x18	-84.1	30	0.0	0.400		0.0	0.400
266 C18x18	-84.1	30	0.0	0.400		0.0	0.400
266 C18x18	-84.1	30	0.0	0.400		0.0 0.0 -0.0	0.400
266 C18x18	-84.1	30	0.0	0.400		0.0 0.0 -0.0 0.0	0.400
266 C18x18	-84.1	30	0.0 0.0 -0.0 -0.0	0.400		0.0 0.0 -0.0	0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 789 C18x18 1059 C18x18	-84.1	30	0.0 0.0 -0.0 -0.0	0.400 0.400 0.400 0.400 0.400 0.400		0.0 0.0 -0.0 0.0 0.0	0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 769 C18x18 1059 C18x18 1547 C18x18 Factored Stress and	-84. -84. 2. 2. -180. -12. i Capacity:	30	0.0 0.0 -0.0 -0.0	0.400 0.400 0.400 0.400 0.400 0.400		0.0 0.0 -0.0 0.0 0.0	0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 789 C18x18 1059 C18x18 1547 C18x18	-84. -84. 2. 2. -180. -12. i Capacity:	30	0.0 0.0 -0.0 -0.0	0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400		0.0 0.0 -0.0 0.0 0.0 0.0	0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 769 C18x18 1059 C18x18 1059 C18x18 1547 C18x18 Factored Stress and	-84. -84. 2. 2. -180. -12.1 i Capacity:	30 30 30 30 30 30	0.0 0.0 -0.0 -0.0 -0.0	0.400 0.400 0.400 0.400 0.400 0.400	Critical	0.0 0.0 -0.0 0.0 0.0 0.0	0.400 0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 759 C18x18 1055 C18x18 1547 C18x18 Pactored Stress and Node Column Label	-84. -84. 2. -180. -12. i Capacity:	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.0 0.0 -0.0 -0.0 0.0 0.0	0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400	Critical Offset 1	0.0 0.0 -0.0 0.0 0.0 0.0 0.0	0.400 0.400 0.400 0.400 0.400 0.400 Status
266 C18x18 301 C18x18 754 C18x18 1059 C18x18 1059 C18x18 1547 C18x18 Factored Stress and Node Column Label	-84. -84. 2. 2. -180. -12. i Capacity:	30 30 30 30 30 30 30	0.(0.(-0.0 -0.(0.(0.(0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400	Critical	0.0 0.0 -0.0 0.0 0.0 0.0 0.0	0.400 0.400 0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 759 C18x18 1055 C18x18 1547 C18x18 Pactored Stress and Node Column Label 266 C18x18	-84. -84. 2. 2. -180. -12. i Capacity:	30 30 30 30 30 30 30	0.(0.(-0.0 -0.(0.(0.(0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400	Critical	0.0 0.0 -0.0 0.0 0.0 0.0 0.0	0.400 0.400 0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 759 C18x18 1055 C18x18 1547 C18x18 Factored Stress an Node Column Labe 266 C18x18 301 C18x18	-84. -84. 2. 2. -180. -12. i Capacity:	30 30 30 30 30 30 30	0.(0.(-0.0 -0.(0.(0.(0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400	Critical	0.0 0.0 -0.0 0.0 0.0 0.0 0.0	0.400 0.400 0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 769 C18x18 1055 C18x18 1547 C18x18 Pactored Stress and Node Column Label 266 C18x18 301 C18x18 754 C18x18	-84. -84. 2. 2. -180. -12. i Capacity:	30 30 30 30 30 30 30	0.(0.(-0.0 -0.(0.(0.(0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400	Critical	0.0 0.0 -0.0 0.0 0.0 0.0 0.0	0.400 0.400 0.400 0.400 0.400 0.400
266 C18x18 301 C18x18 754 C18x18 759 C18x18 1055 C18x18 1547 C18x18 Factored Stress an Node Column Labe 266 C18x18 301 C18x18	-84. -84. 2. 2. -180. -12. i Capacity:	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.(0.(-0.0 -0.(0.(0.(0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400 0 0.400	Critical	0.0 0.0 -0.0 0.0 0.0 0.0 0.0	0.400 0.400 0.400 0.400 0.400 0.400

Figure 11 - Two-Way Shear Results around Concrete Piers

CONCRETE SOFTWARE SOLUTIONS

B7 - Punching Shear Around Piles (Ultimate Load Combinations):	Type 1	B7 - Punching Shear					Гуре 2
Units> Applied Shear Force Vu (kips), Applied Moments Mux, Muy (k-f Factored Shear Stress vu (psi), Factored Shear Resistance vc Concrete Strength f ^c (psi), distances X offset, Y_Offset (f Average depth (in), Dimensions Bx, By (fE) Area (in ²), Jxx, Jyy, Jxy (in ⁴)	t) (psi)	Concrete S Average de	ear Force Vu (hear Stress Vu trength f'c (g	kips), Applied (psi), Factor si), distances nsions Bx, By	i Moments M ed Shear R X_Offset,	ux, Muy (k-ft) esistance vc (p:	
Geometry of Resisting Area		Geometry of Resistin					
BILL BULLER BULLER		Pile			sions	Centroid	_
Node Label Location Depth Bx By X Offset Y O		Node Label	Location De			X_Offset Y_Offse	
	-0.00	347 Pile 367 Pile 967 Pile	Inner Inner	27.75 4.81 27.75 4.81 27.75 4.81	4.81	-0.00 -0.0	00
1851 Pile Inner 27.75 4.81 4.81 -0.00	-0.00	987 Pile	Inner	27.75 4.81	4.81	-0.00 -0.0	00
Properties of Resisting Area		Properties of Resist					
Node Pile Label Area Jxx Jvv Jxv		Node Pile Label	Area	Jxx	Јуу	Jxy	
Node Pile Label Area Jxx Jyy Jxy		347 Pile	5029.42	2249450.25	2249449.7		
171 Pile 5029.43 2249450.50 2249450.00 0.		367 Pile	5029.42	2249450.00	2249450.0	0.00	
1811 Pile 5029.43 2249450.25 2249450.00 0. 1851 Pile 5029.42 2249450.00 2249450.00 0.		967 Pile 987 Pile	5029.43 5029.42	2249450.25	2249450.0		
Ultimate Load Combination: U7		Ultimate Load Combin					
Factored Applied Forces:		Factored Applied F					
Node Pile Label Vu Mux Gamma_X Muy	Gamma_Y	Node Pile Label	Vu	Mux	Gamma_X	Muy	Gamma_Y
	0.0 0.400	347 Pile 367 Pile	167.67	-0.		0.0	
	0.0 0.400 0.0 0.400	967 Pile 987 Pile	43.28	0.	0 0.400	0.0	0.400
Factored Stress and Capacity:		Factored Stress an					
Node Pile Label vu f'c Phi*vc X_Offset Y_Off	set Status	Node Pile Label			Phi*vc X	Critical Point_ _Offset Y_Offset	
171 Pile 17.28 3000.00 164.32 -2.38 -0	.38 Safe	347 Pile	33.34	3000.00	164.32	-0.74 -2.2	9 Safe
1811 Pile 18.26 3000.00 164.32 -2.41 0	.00 Safe	367 Pile 967 Pile	33.34		164.32	-2.41 -0.00	
1851 Pile 18.26 3000.00 164.32 1.41 1	.95 Safe	987 Pile	8.61		164.32	1.95 1.4	

	> Applied She							pe
		ear Force V	a (kips).	Applied				_
	Factored S	hear Stress						
	Concrete S	trength f'c	(psi), di	istances	X_Offset,	Y_Offset	(ft)	
		epth (in), Di			(ft)	-		
	Area (in^2)), Jxx, Jyy,	, Jxy (in'	^4)				
Geome	try of Resistin	g Area						
	Pile	1	Average	Dimen		Cent		
	Label	Location	Depth	Bx	By	X_Offset	Y_Offset	
	Pile		03.75	4 01	4 01	-0.00	-0.00	
	Pile	Inner Inner	27.75	4.01	4.01	-0.00	-0.00	
717	Pile	Inner	27.75	4.81	4.81	-0.00 -0.00 -0.00 -0.00 -0.00 0.00	-0.00	
1897	Pile	Inner Inner	27.75	4.81	4.81	-0.00	-0.00	
	Pile	Inner	27.75	4.81	4.81	-0.00	-0.00	
	Pile	Inner Inner	27.75	4.81	4.81	0.00	-0.00	
Prope	rties of Resist	ing Area						
	Pile Label	Area	Jxx		JYY		Јжу	
677	Pile	5029.42			2249449.7		0.00	
097	Pile Pile	5029.42			2249450.0		0.00	
1007	Pile	5029.42 5029.43			2249449.5		0.00	
	Pile				2249450.0			
	Pile	5029.42 5029.42			2249450.0		0.00	
1931	Pile	5029.42	22434	149.50	2249449.1	/5	0.00	
Ultim	ate Load Combin	ation; U7						
	tored Applied F							
	de mille nebel							
No	de Pile Label	Vu	2	Aux	Gamma_x	Muy	Gamm	Ja_
6	77 Pile	143.9	47	=0./	0 0.400		0.0 0.	40
6	97 Pile	181.3	38		0 0.400		-0.0 0.	
7	17 Pile	216.6	62		0 0.400		-0.0 0.	
18	97 Pile	1.8	85	0.0	0 0.400		0.0 0.	
19	17 Pile	36.7	74	0.0	0 0.400		-0.0 0.	.40
19	37 File	69.9	94	0.0	0 0.400		-0.0 0.	
Fac	tored Stress and	d Capacity:						
							- 1	
			_	_		Critical Coffset Y	Point	

677 File 29.62 3000.00 164.12 -0.74 -2.29 Bafe 677 File 36.06 3000.00 164.32 -0.0 -2.41 Bafe 717 File 36.06 3000.00 164.32 2.38 -0.38 Bafe 1857 File 0.37 3000.00 164.32 2.34 -0.38 Bafe 1957 File 0.37 3000.00 164.32 2.41 -0.00 Safe 1957 File 0.37 3000.00 164.32 2.41 -0.00 Safe 1957 File 7.30 3000.00 164.32 -41 -0.55 Safe 1937 File 7.30 3000.00 164.32 -41 -0.00 Safe	Node	Pile Label	vu	f'c	Phi*vc	X_Offset	Y_Offset	Status
1917 Pile 7.30 3000.00 164.32 1.41 1.95 Safe	697	Pile	36.06	3000.00	164.32	0.00	-2.41	Safe
	1917	Pile	7.30	3000.00	164.32	1.41	1.95	Safe

Figure 12 – Two-Way Shear Results around Piles

3. Pile Reactions

The model results provide a detailed list of the pile reactions indicating the magnitude and direction of the resulting forces on each pile in the foundation model. Whether force is downward compression or upward net tension on the pile, the load combination producing the maximum reaction is denoted in the output results table.

B3 - REACTIONS:								<u>Type 1</u>
Units> Force (kip Service Load Combina 	Spring B	Pile	Restra				laved Nodes_	
Node Fz	FZ	FZ	Fz M:	2	МУ	FZ	Mx	Му
171 - 1811 - 1851 -		152.222 72.436 72.436	-			-	- - -	- -
Sum of all forces	and moments wi	ith respect	to center of	gravity	(X, Y) = (7.50, 9.27	7) ft	
Sum of Reactions	FZ	Mx	My					
Soil Springs Piles	297.094	-563.779	-0.000					
Restraints Slaved Nodes		-	-					
Total Reactions Total Loads	297.094 -297.094	-563.779 563.779	-0.000 -0.000					

- REACTIONS:									Type
its> Force rvice Load Co			ip-ft)						
Soi		Spring	Pile	Rest	raints		Sla	ved Nodes	
Node Fz		Fz	Fz	FZ	Mx	Му	FZ	Mx	My
347	-	-	144.439	-	-	-	-	-	
367	-	-	144.439	-	-	-	-	-	
967	-	-	31.812	-	-	-	-	-	
987	-	-	31.812	-	-	-	-	-	
Sum of React	ions	Fz	Mx	Му					
Soil					_				
Springs		-	-		-				
Piles		352.500	-597.520	0.00	00				
Restraints		-	-		-				
Slaved Nodes		-	-		-				
Total Reacti	ons	352.500	-597.520	0.00	0				
		-352.500	597.520	-0.00					

3 - REACT	IONS:								Type 3
nits>	Force (kip), Moment (k	ip-ft)						
	ad Combina								
	Soil	Spring	Pile	Re	straints		Sla	wed Nodes	
Node	FZ	Fz	Fz	FZ	Mx	Му	FZ	Mx	МУ
677			123.880			-		_	
697	-	-	158.263	-	-	-	-	-	-
717	-	-	190.647	-	-	-	-	-	-
1897	-	-	0.000	-	-	-	-	-	-
1917	-	-	19.886	-	-	-	-	-	-
1937	-	-	50.324	-	-	-	-	-	-
Sum of	all forces	and moments	with respect	to center	of gravity	(X, Y) =	(15.00, 9.00)) ft	
Sum of	Reactions	FZ	Mx	Му					
Soil					_				
Springs		-	-		-				
Piles		543.000	-1198.400	186.	597				
Restrai	nts	-	-		-				
Slaved	Nodes	-	-		-				
Total R	eactions	543.000	-1198.400	186.	597				
Total L	oads	-543.000	1198.400	-186.	597				

Figure 13 – Piles Service Reactions

- REACTIONS:									Туре
its> Force	(lein)	Momont (kin	£+)						
timate Load C)-IC)						
Soi.			Pile	Res	traints		Slave	d Nodes	
Node Fz		Fz		Fz	Mx	Му		Mx	My
171			171.722						
1811	-	-	91.845	-	-	-	-	-	
1851	-	-	91.845	-	-	-	-	-	
Sum of all for Sum of React.		Fz	Mx	МУ					
Soil		-	-		_				
Springs		-	-		-				
Piles		355.413	-570.634	-0.0	00				
Restraints		-	-		-				
Slaved Nodes		-	-		-				
Total Reaction	ons	355.413	-570.634	-0.0	00				
Total Loads		-355.413	570.634	-0.0	00				

B3 - REACT	TIONS:								<u>Type 2</u>
Units>	Force (kip), Moment (ki	p-ft)						
	Load Combin								
_	Soil	Spring	Pile		raints			d Nodes_	
Node	Fz	Fz	FZ	Fz	Mx	Му	Fz	Mx	Му
347	-	-	167.666	-	-	-	-	-	-
367	-	-	167.666	-	-	-	-	-	-
967	-	-	43.284	-	-	-	-	-	-
987	-	-	43.284	-	-	-	-	-	-
		and moments Fz	-	to center o	of gravity	(X, Y) = (7.50, 9.00) f	t	
Soil		-	-		-				
Springs	3	-	-		-				
Piles		421.900	-610.962	0.00	00				
Restrai		-	-		-				
Slaved	Nodes	-	-		-				
	Reactions	421.900	-610.962	0.00					
Total I	Loads	-421.900	610.962	-0.00	00				

	IONS:								Type
its>	Force (kip)	. Moment (k:	ip-ft)						
	oad Combina								
_	Soil	_Spring	Pile	Restraints			Slaved Nodes		
Node	Fz	Fz	FZ	Fz	Mx	МУ	FZ	Mx	МУ
677			143.966						
697	_	_	181.383	_	_	_	_	_	
717	_	-	216.620	_	-	-	-	_	
1897	-	-	1.851	-	-	-	-	-	
1917	-	-	36.737	-	-	-	-	-	
1937	-	-	69.944	-	-	-	-	-	
Sum of	all forces	and moments	with respect	to center	or gravity	(X, Y) =	(15.00, 9.00) IC	
Sum of	Reactions	FZ	Mx	МУ					
	Reactions	Fz	Mx	Му					
Soil		F2	Mx 	Му					
		Fz 	Mx 	My 218.	 - - 783				
Soil Springs					 				
Soil Springs Piles	nts				 - 783 				

Figure 14 – Piles Ultimate Reactions

Note: Positive and negative reaction values indicate compression and tension forces in piles, respectively.

4. Pile Cap Model Statistics

Since spMats is utilizing finite element analysis to model and design the foundation. It is useful to track the number of elements and nodes used in the model to optimize the model results (accuracy) and running time (processing stage). spMats provides model statistics to keep tracking the mesh sizing as a function of the number of nodes and elements.

Startup Defaults	Autosave	Display	Statistics	Startup Defaults	Autosave	Display	Statistics
Statistics				Statistics			
Nodes Nodes	2471	Elements	2350	Nodes Nodes	1147	Elements	1080
Definitions				Definitions			
Thickness	5	Nodal Loads	12	Thickness	5	Nodal Loads	12
Concrete	6	Design Param. Nodal Springs		Concrete	3	Design Param. Nodal Springs	
Reinforced Steel	1	Slaved Nodes		Reinforced Steel	1	Slaved Nodes	0
Surface Loads	0	Load Combos	24	Surface Loads	0	Load Combos	24
			<u>Type 1</u>	-			<u>Type 2</u>

	Startup Defaults	Autosave	Display	Statistics
ſ				
	Statistics			
	Nodes Nodes	2257	Elements	2160
	Definitions			
	Thickness	5	Nodal Loads	12
	Concrete	6	Design Param.	1
	Soil	3	Nodal Springs	0
	Reinforced Steel	1	Slaved Nodes	0
	Surface Loads	0	Load Combos	24
				Type 3

Figure 15 – Model Statistics

5. Column and Pile Design - spColumn

spMats provides the options to export columns and piles information from the foundation model to spColumn. Input (CTI) files are generated by spMats to include the section, materials, and the loads from the foundation model required by spColumn for strength design and investigation of piles and columns. Once the foundation model is completed and successfully executed, the following steps illustrate the design of a sample pile and column.

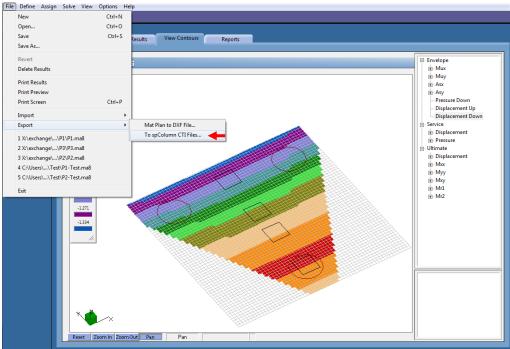


Figure 16 – Exporting CTI Files

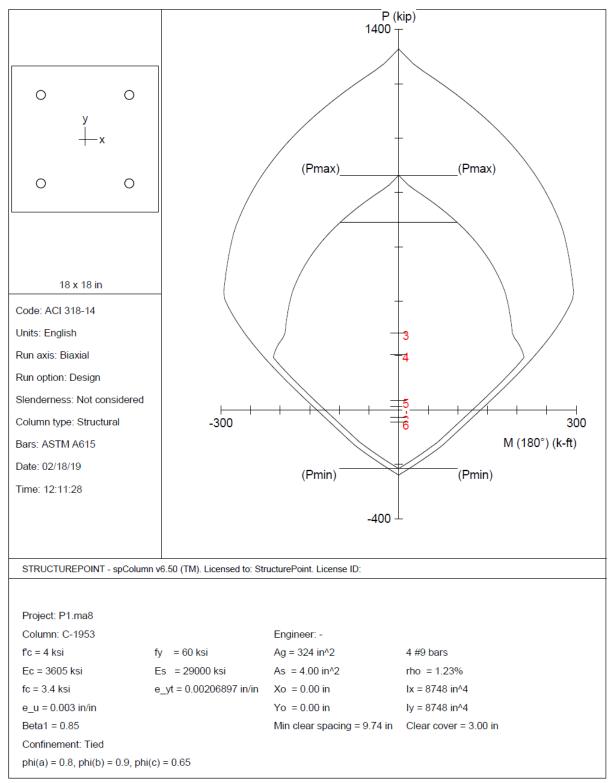
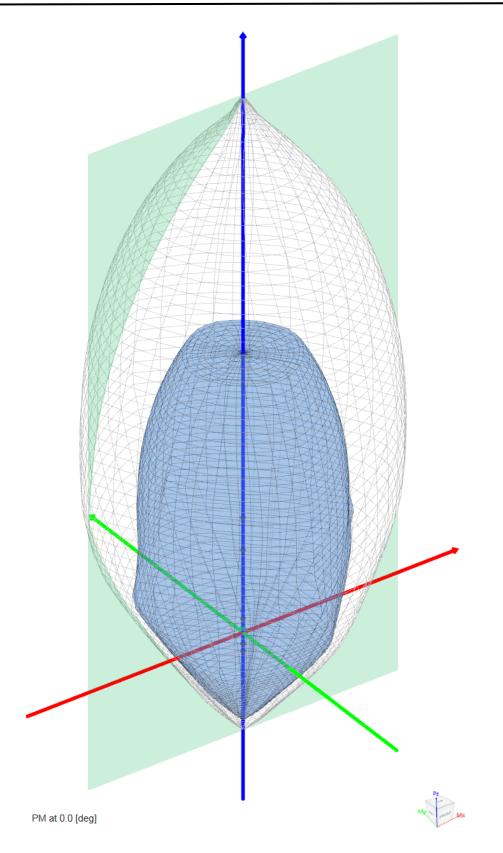
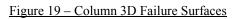

Export to spColumn CTI Files	Export to spColumn CTI Files
Run Option Structural Member	Run Option Structural Member [^] Investigation [^] Columns [^] Design [^] Piles [^] Material Properties [^] for fry: 60
Reinforcement Bar set: ASTM A615 Minimum Maximum No. of bars: 4 12	Reinforcement Bar set: ASTM A615 💌 Minimum Maximum No. of bars: 4 12
Bar size: #6 ▼ #6 ▼ Clear cover (Longitudinal Bars) 3 in I Eliminate duplicate loads	Bar size: #4 #14 Clear cover (Longitudinal Bars) 2 in Eliminate duplicate loads OK Cancel

Figure 17 – Exporting CTI Files Dialog Box


After exporting spColumn input files, the pile and column design/investigation can proceed/modified to meet project specifications and criteria. In the following a sample pile and column design results are shown as an example.



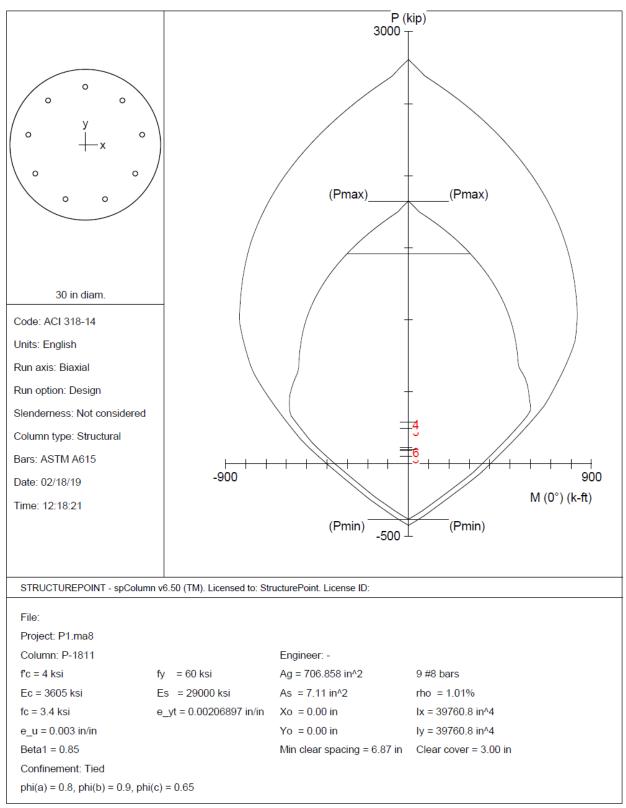


Figure 20 - Pile Interaction Diagram with Reaction Applied

6. 2D/3D Viewer

2D/3D Viewer is an advanced module of the spColumn program. It enables the user to view and analyze 2D interaction diagrams and contours along with 3D failure surfaces in a multi viewport environment.

2D/3D Viewer is accessed from within spColumn. Once a successful run has been performed, you can open 2D/3D Viewer by selecting the **2D/3D Viewer** command from the **View** menu. Alternatively, 2D/3D Viewer can also be accessed by clicking the 2D/3D Viewer button in the program toolbar.

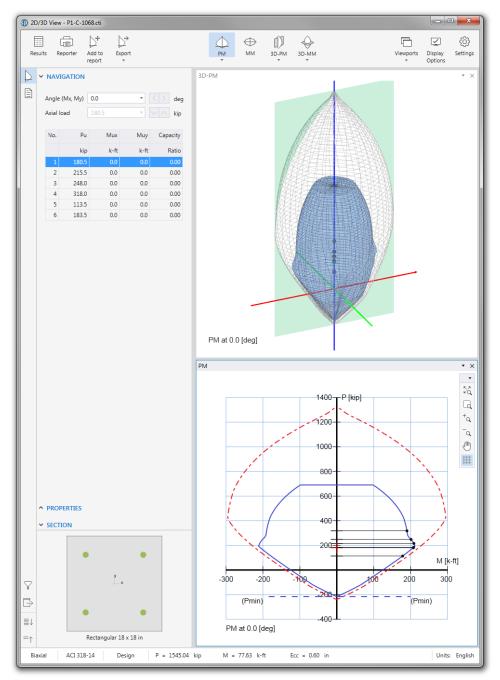


Figure 21 – 2D/3D View for Column

7. Tied vs. Spiral Confinement

The builder was provided two options for confinement to increase field and construction flexibility. The impact of spiral vs tied confinement is illustrated below. Note that pile diameter can be reduced below 30 inches and reactions reevaluated.

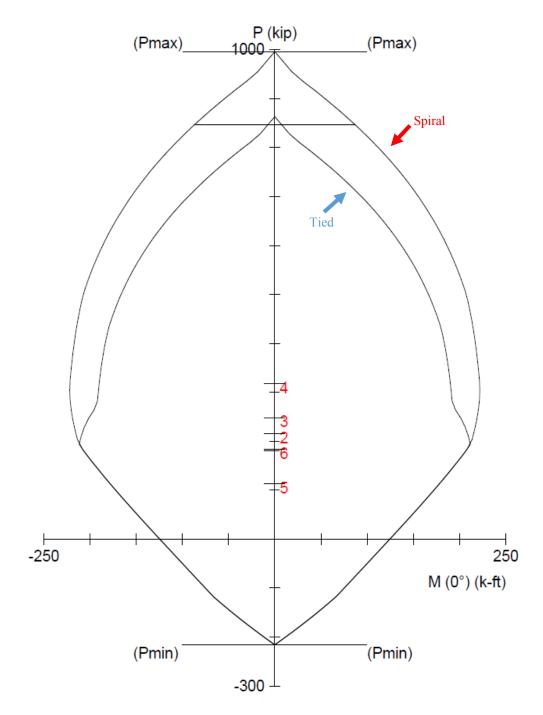


Figure 22 - Tied vs. Spiral Confinement