

TT J TI TT TT IIII TI Design Column

Slender Concrete Column Design in Sway Frames - Moment Magnification Method (ACI 318-19)

Slender Concrete Column Design in Sway Frames - Moment Magnification Method (ACI 318-19)

Evaluate slenderness effect for columns in a sway frame multistory reinforced concrete building by designing the first story exterior column. The clear height of the first story is 15 ft-6 in., and is 9 ft. for all of the other stories. Lateral load effects on the building are governed by wind forces. Compare the calculated results with the values presented in the Reference and with exact values from <u>spColumn</u> engineering software program from <u>StructurePoint</u>.

Contents

1.	Factored Axial Loads and Bending Moments	2
	1.1. Service loads	2
	1.2. Load Combinations – Factored Loads	2
2.	Slenderness Effects and Sway or Nonsway Frame Designation	3
3.	Determine Slenderness Effects	4
4.	Moment Magnification at Ends of Compression Member	5
	4.1. Gravity Load Combination #2 (Gravity Loads Only)	5
	4.2. Lateral Load Combination #6 (Gravity Plus Wind Loads)	6
5.	Moment Magnification along Length of Compression Member	.11
	5.1. Gravity Load Combination #2 (Gravity Loads Only)	.11
	5.2. Lateral Load Combination #6 (Gravity Plus Wind Loads)	.14
6.	Column Design	.18
	6.1. c, <i>a</i> , and strains in the reinforcement	.18
	6.2. Forces in the concrete and steel	.19
	6.3. ϕP_n and ϕM_n	.19
7.	Column Interaction Diagram - spColumn Software	.21
8.	Summary and Comparison of Design Results	.37
9.	Conclusions & Observations	.39

Code

Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)

References

- Reinforced Concrete Mechanics and Design, 8th Edition, 2021, James Wight, Pearson, Example 12-3
- spColumn Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2021
- "<u>Slenderness Effects for Concrete Columns in Sway Frame Moment Magnification Method (ACI 318-19)</u>" Design Example, <u>STRUCTUREPOINT</u>, 2022
- "<u>Slenderness Effects for Columns in Non-Sway Frame Moment Magnification Method (ACI 318-19)</u>" Design Example, <u>STRUCTUREPOINT</u>, 2022

Design Data

 f_c ' = 4,000 psi

 $f_y = 60,000 \text{ psi}$

Slab thickness = 6 in.

Exterior Columns = 18 in. x 18 in.

Interior Columns = 18 in. x 18 in.

Interior Beams = 18 in. x 30 in. x 30 ft

Exterior Beams = 18 in. x 30 in. x 32 ft

Floor superimposed dead load = 20 psf

Floor live load = 80 psf

Roof superimposed dead load = 25 psf

Roof live load = 30 psf

Wind loads computed according to ASCE 7-10

Total building loads in the first story from the reference:

Table 1 – Total building factored loads							
ASCE 7-10 Reference	ASCE 7-10 Reference No. Load Combination						
2.3.2-1	1	1.4D	2,164				
2.3.2-2	2	$1.2D + 1.6L + 0.5L_r$	2,293				
	3	$1.2D + 0.5L + 1.6 L_r$	2,074				
2.3.2-3	4	$1.2D + 1.6L_r + 0.8W$	1,962				
	5	$1.2D + 1.6L_r - 0.8W$	1,931				
2224	6	$1.2D + 0.5L + 0.5L_r + 1.0W$	2,031				
2.3.2-4	7	$1.2D + 0.5L + 0.5L_r - 1.0W$	1,992				
2226	8	0.9D + 1.0W	1,411				
2.3.2-0	9	0.9D - 1.0W	1,372				

1. Factored Axial Loads and Bending Moments

1.1. Service loads

Table 2 - Exterior column service loads									
Load Case	Axial Load,	Bending	Moment, ft-kip						
Load Case	kip	Тор	Bottom						
Dead, D	286.0	-36.2	-34.3						
Live, L	48.9	-13.6	-12.9						
Roof Live, L _r	9.98	0.0	0.0						
Wind, W (N-S)	9.2	-53.8	-46.3						

1.2. Load Combinations - Factored Loads

ASCE 7-10 (2.3.2)

	Table 3 - Exterior column factored loads									
ASCE 7-10 Reference	No.	Load Combination	Axial Load, kip	Bending Moment, ft-kip		M _{Top,ns} ft-kip	M _{Bottom,ns} ft-kip	M _{Top,s} ft-kip	M _{Bottom,s} ft-kip	
			Ĩ	Тор	Bottom		1	1		
2.3.2-1	1	1.4D	400.4	50.7	48.0	50.7	48.0			
2.3.2-2	2	$1.2D + 1.6L + 0.5L_r$	426.4	65.2	61.8	65.2	61.8			
	3	$1.2D + 0.5L + 1.6 L_r$	383.6	50.2	47.6	50.2	47.6			
2.3.2-3	4	$1.2D + 1.6L_r + 0.8W$	366.5	86.5	78.2	43.4	41.2	43.0	37.0	
	5	$1.2D + 1.6L_r - 0.8W$	351.8	0.4	4.1	43.4	41.2	-43.0	-37.0	
2224	6	$1.2D + 0.5L + 0.5L_r + 1.0W$	381.8	104.0	93.9	50.2	47.6	53.8	46.3	
2.3.2-4	7	$1.2D + 0.5L + 0.5L_r - 1.0W$	363.4	-3.6	1.3	50.2	47.6	-53.8	-46.3	
2226	8	0.9D + 1.0W	266.6	86.4	77.2	32.6	30.9	53.8	46.3	
2.3.2-0	9	0.9D - 1.0W	248.2	-21.2	-15.4	32.6	30.9	-53.8	-46.3	

2. Slenderness Effects and Sway or Nonsway Frame Designation

Columns and stories in structures are considered as nonsway frames if the increase in column end moments due to second-order effects does not exceed 5% of the first-order end moments, or the stability index for the story (Q) does not exceed 0.05. <u>ACI 318-19 (6.6.4.3)</u>

 $\sum P_u$ is the total vertical load in the first story corresponding to the lateral loading case for which $\sum P_u$ is greatest (without the wind loads, which would cause compression in some columns and tension in others and thus would cancel out). ACI 318-19 (6.6.4.4.1 and R6.6.4.3)

 V_{us} is the factored horizontal story shear in the first story corresponding to the wind loads, and Δ_o is the first-order relative deflection between the top and bottom of the first story due to V_{us} . <u>ACI 318-19 (6.6.4.4.1 and R6.6.4.3)</u>

From Table 1, load combination (2.3.2-2 No. 2) provides the greatest value of $\sum P_u$.

$$\Sigma P_{\mu} = 1.2 \times D + 1.6 \times L + 0.5 \times L_r = 2,293 \text{ kip}$$

ASCE 7-10 (2.3.2-2)

Since there is no lateral load in this load combination, the reference applied an arbitrary lateral load representing (V_{us}) at the top of the first story and calculated the resulting story lateral deflection (Δ_o).

$$V_{us} = 20 \text{ kip (given)}$$
$$\Delta_o = 0.16 \text{ in. (given)}$$
$$Q = \frac{\Sigma P_u \times \Delta_o}{2,293 \times 0.12}$$

$$Q = \frac{\Sigma P_u \times \Delta_o}{V_{us} \times l_c} = \frac{2,293 \times 0.16}{20 \times (18 \times 12)} = 0.085 > 0.05$$

ACI 318-19 (Eq. 6.6.4.4.1)

Thus, the frame at the first story level is considered sway.

spcolumn

3. Determine Slenderness Effects

$$I_{column} = 0.7 \times \frac{c^4}{12} = 0.7 \times \frac{18^4}{12} = 6,124 \text{ in.}^4$$
$$E_c = 57,000 \times \sqrt{f_c'} = 57,000 \times \sqrt{4,000} = 3,605 \text{ ksi}$$

For the column below level 2:

 $\frac{E_c \times I_{column}}{l_c} = \frac{3,605 \times 6,124}{18 \times 12 - 20/2} = 110 \times 10^3 \text{ in.kip}$

For the column above level 2:

$$\frac{E_c \times I_{column}}{l_c} = \frac{3,605 \times 6,124}{11.5} = 160 \times 10^3 \text{ in.kip}$$

For beams framing into the columns:

$$\frac{E_b \times I_{beam}}{l_b} = \frac{3,605 \times 14,175}{32 \times 12} = 133 \times 10^3 \text{ in.kip}$$

Where:

$$E_b = 57,000 \times \sqrt{f_c'} = 57,000 \times \sqrt{4000} = 3,605$$
 ksi

$$I_{beam} = 0.35 \times \frac{b \times h^3}{12} = 0.35 \times \frac{18 \times 30^3}{12} = 14,175 \text{ in.}^4$$

$$\Psi_{A} = \frac{\left(\sum \frac{EI}{l_{c}}\right)_{columns}}{\left(\sum \frac{EI}{l}\right)_{beams}} = \frac{110 + 160}{133} = 2.027$$

 $\Psi_{B} = 0.0$ (Column considered fixed at the base)

Using Figure R6.2.5.1 from ACI 318-19 $\rightarrow k = 1.282$ as shown in the figure below for the exterior column.

ACI 318-19 (Figure R6.2.5.1)

Figure 2 – Effective Length Factor (k) for Exterior Column (Sway Frame)

$$\frac{k \times l_u}{r} = \frac{1.282 \times 15.5}{5.196} = 45.90 > 22 \rightarrow \text{Consider Slenderness}$$

ACI 318-19 (6.2.5.1a)

Where:

$$r = \text{radius of gyration} = (a) \sqrt{\frac{I_g}{A_g}} \quad or \quad (b) \ 0.3 \times c_1$$

$$r = \sqrt{\frac{I_g}{A_g}} = \sqrt{\frac{18^4 / 12}{18^2}} = 5.196 \text{ in.}$$

4. Moment Magnification at Ends of Compression Member

A detailed calculation for load combinations 2 and 6 is shown below to illustrate the slender column moment magnification procedure. Table 4 summarizes the magnified moment computations for the exterior columns.

4.1. Gravity Load Combination #2 (Gravity Loads Only)

$$M_2 = M_{2ns} + \delta_s M_{2s}$$
 ACI 318-19 (6.6.4.6.1b)

Where:

$$M_{Top_s} = M_{Bottom_s} = M_{2_s} = 0$$
 ft.kip

$$\therefore M_{2} = M_{2ns}$$

$$M_{Top_{2}2^{nd}} = M_{Top,ns} = 65.2 \text{ ft.kip}$$

$$M_{Bottom_{2}n^{nd}} = M_{Bottom,ns} = 61.8 \text{ ft.kip}$$

$$M_{2_{2}2^{nd}} = max \Big(M_{Top_{2}2^{nd}}, M_{Bottom_{2}2^{nd}} \Big) = M_{Top_{2}2^{nd}} = 65.2 \text{ ft.kip} \rightarrow M_{1_{2}1^{nt}} = M_{Top_{2}1^{nt}} = 65.2 \text{ ft.kip}$$

$$M_{1_{2}2^{nd}} = min \Big(M_{Top_{2}2^{nd}}, M_{Bottom_{2}2^{nd}} \Big) = M_{Bottom_{2}2^{nd}} = 61.8 \text{ ft.kip} \rightarrow M_{1_{2}1^{nt}} = M_{Bottom_{2}1^{nt}} = 61.8 \text{ ft.kip}$$

$$P_{u} = 426.4 \text{ kip}$$

4.2. Lateral Load Combination #6 (Gravity Plus Wind Loads)

$$M_2 = M_{2ns} + \delta_s M_{2s}$$
 ACI 318-19 (6.6.4.6.1b)

Where:

$$\delta_{s} = \text{moment magnifier} = \begin{cases} (a) & \frac{1}{1-Q} \\ (b) & \frac{1}{1-\frac{\Sigma P_{u}}{0.75\Sigma P_{c}}} \\ (c) & \text{Second-order elastic analysis} \end{cases}$$

$$\underline{ACI 318-19 (6.6.4.6.2)}$$

There are three options for calculating δ_s . ACI 318-19 (6.6.4.6.2(b)) will be used since it does not require a detailed structural analysis model results to proceed and is also used by the solver engine in spColumn.

 $\sum P_u$ is the summation of all the factored vertical loads in the first story, and $\sum P_c$ is the summation of the critical buckling load for all sway-resisting columns in the first story.

$$P_{c} = \frac{\pi^{2} (EI)_{eff}}{(kl_{u})^{2}}$$
 ACI 318-19 (6.6.4.4.2)

Where:

r

2

$$(EI)_{eff} = \begin{cases} (a) & \frac{0.4E_cI_g}{1+\beta_{ds}} \\ (b) & \frac{0.2E_cI_g + E_sI_{se}}{1+\beta_{ds}} \\ (c) & \frac{E_cI}{1+\beta_{ds}} \end{cases} \end{cases}$$
 ACI 318-19 (6.6.4.4.4)

There are three options for calculating the effective flexural stiffness of slender concrete columns (EI)eff. The second equation provides accurate representation of the reinforcement in the section and will be used in this example and

7

is also used by the solver in <u>spColumn</u>. Further comparison of the available options is provided in "<u>Effective</u> Flexural Stiffness for Critical Buckling Load of Concrete Columns" technical note.

$$I_{column} = \frac{c^4}{12} = \frac{18^4}{12} = 8,748 \text{ in.}^4$$
ACI 318-19 (Table 6.6.3.1.1(a))

$$\beta_{ds}$$
 is the ratio of maximum factored sustained shear within a story to the maximum factored shear in that story associated with the same load combination. The maximum factored sustained shear in this example is equal to zero

leading to $\beta_{ds} = 0$.

 $E_c = 57,000 \times \sqrt{f_c'} = 57,000 \times \sqrt{4000} = 3,605$ ksi

For exterior columns with one beam framing into them in the direction of analysis (8 columns):

With 8-#6 reinforcement equally distributed on all sides $I_{se} = 111.5$ in.⁴ (Ref. uses approximate value of 150 in.⁴ in lieu of exact value calculated by <u>spColumn</u>).

$$(EI)_{eff} = \frac{0.2E_c I_g + E_s I_{se}}{1 + \beta_{ds}}$$
ACI 318-19 (6.6.4.4.4(b))

$$(EI)_{eff} = \frac{0.2 \times 3,605 \times 8,748 + 29,000 \times 111.5}{1+0} = 9.5 \times 10^6 \text{ kip-in.}^2$$

k = 1.282 (calculated previously).

$$P_{c1} = \frac{\pi^2 \times 9.5 \times 10^6}{\left(1.282 \times 15.5 \times 12\right)^2} = 1,655.59 \text{ kip}$$

For exterior columns with two beams framing into them in the direction of analysis (8 columns):

$$\Psi_{A} = \frac{\left(\sum \frac{EI}{l_{c}}\right)_{columns}}{\left(\sum \frac{EI}{l}\right)_{beams}} = \frac{110 + 160}{133 + 142} = 0.981$$

 $\Psi_{B} = 0.0$ (Column essentially fixed at base)

Using Figure R6.2.5.1 from ACI 318-19 $\rightarrow k = 1.154$ as shown in the figure below for the exterior columns with two beams framing into them in the directions of analysis.

ACI 318-19 (Figure R6.2.5.1)

sicolumn

ACI 318-19 (19.2.2.1.b)

ACI 318-19 (6.6.3.1.1)

ACI 318-19 (Figure R6.2.5.1)

Figure 3 – Effective Length Factor (k) for Exterior Columns with Two Beams Framing into them in the Direction of Analysis

$$P_{c2} = \frac{\pi^2 \times 9.5 \times 10^6}{\left(1.154 \times 15.5 \times 12\right)^2} = 2043,84 \text{ kip}$$

For interior columns (8 columns):

$$\Psi_{A} = \frac{\left(\sum \frac{EI}{l_{c}}\right)_{columns}}{\left(\sum \frac{EI}{l}\right)_{beams}} = \frac{110 + 160}{133 + 142} = 0.981$$

 $\Psi_{B} = 0.0$ (Column essentially fixed at base)

ACI 318-19 (Figure R6.2.5.1)

ACI 318-19 (Figure R6.2.5.1)

Using Figure R6.2.5.1 from ACI 318-19 \rightarrow k = 1.154 as shown in the figure below for the interior columns.

Figure 4 – Effective Length Factor (k) Calculations for Interior Columns

With 8-#8 reinforcement equally distributed on all sides $I_{se} = 192.6$ in.⁴

1

2,031

0.75×49,976.83

-=1.057

 $\delta_s =$

1

$$(EI)_{eff} = \frac{0.2E_c I_g + E_s I_{se}}{1 + \beta_{ds}}$$

$$(EI)_{eff} = \frac{0.2 \times 3,605 \times 8,748 + 29,000 \times 192.6}{1 + 0} = 11.9 \times 10^6 \text{ kip-in.}^2$$

$$P_{c3} = \frac{\pi^2 \times 11.9 \times 10^6}{(1.154 \times 15.5 \times 12)^2} = 2,547.67 \text{ kip}$$

$$\Sigma P_c = n_1 \times P_{c1} + n_2 \times P_{c2} + n_3 \times P_{c3}$$

$$\Sigma P_c = 8 \times 1,655.59 + 8 \times 2,043.84 + 8 \times 2,547.67 = 49,976.83 \text{ kip}$$

$$\Sigma P_u = 2,031 \text{ kip (Table 1)}$$

$$\delta_s = \frac{1}{1 - \frac{\Sigma P_u}{0.75 \times \Sigma P_c}}$$

$$ACI 318-19 (6.6.4.6.2(b))$$

$\delta_s M_{Top,s} = 1.057 \times 53.8 = 56.88$ ft.kip	
$M_{_{Top_2^{nd}}} = M_{_{Top,ns}} + \delta_s M_{_{Top,s}} = 50.24 + 56.88 = 107.12$ ft.kip	<u>ACI 318-19 (6.6.4.6.1)</u>
$\delta_s M_{Bottom,s} = 1.057 \times 46.30 = 48.95 \text{ ft.kip}$	
$M_{Bottom_2^{nd}} = M_{Bottom,ns} + \delta_s M_{Bottom,s} = 47.61 + 48.95 = 96.56 \text{ ft.kip}$	<u>ACI 318-19 (6.6.4.6.1)</u>
$M_{2_22^{nd}} = max \left(M_{Top_22^{nd}}, M_{Bottom_22^{nd}} \right) = M_{Top_22^{nd}} = 107.12 \text{ ft.kip} \rightarrow M_{2_11^{st}} = M_{Top_11^{st}} = 104$.04 ft.kip
$M_{1_2^{nd}} = min(M_{Top_2^{nd}}, M_{Bottom_2^{nd}}) = M_{Bottom_2^{nd}} = 96.56 \text{ ft.kip} \rightarrow M_{1_2^{1^{d}}} = M_{Bottom_1^{1^{d}}} = 96.56 \text{ ft.kip}$	93.91 ft.kip

 $P_u = 381.8 \text{ kip}$

A summary of the moment magnification factors and magnified moments for the exterior column for all load combinations using both equation options ACI 318-19 (6.6.4.6.2(a)) and (6.6.4.6.2(b)) to calculate δ_s is provided in the table below for illustration and comparison purposes. Note: The designation of M_1 and M_2 is made based on the second-order (magnified) moments and not based on the first-order (unmagnified) moments.

	Table 4 - Factored Axial loads and Magnified Moments at the Ends of Exterior Column										
N-	Land Combination	Axial Load,	Us	ing ACI 6.6	.4.6.2(a)	Us	Using ACI 6.6.4.6.2(b)				
NO.	Load Combination	Kip	$\delta_{\rm s}$	M ₁ , ft-kip	M ₂ , ft-kip	$\delta_{\rm s}$	M ₁ , ft-kip	M ₂ , ft-kip			
1	1.4D	400.4	*	*	*	1.06	48.0	50.7			
2	$1.2D + 1.6L + 0.5L_r$	426.4	1.09	61.8	65.2	1.07	61.8	65.2			
3	$1.2D + 0.5L + 1.6 \ L_r$	383.6	*	*	*	1.06	47.6	50.2			
4	$1.2D + 1.6L_r + 0.8W$	366.5	*	*	*	1.06	80.3	88.9			
5	$1.2D + 1.6L_r - 0.8W$	351.8	*	*	*	1.05	-1.9	2.1			
6	$1.2D + 0.5L + 0.5L_r + 1.0W$	381.8	1.08	97.7	108.4	1.06	96.6	107.1			
7	$1.2D + 0.5L + 0.5L_r - 1.0W$	363.4	*	*	*	1.06	-1.3	-6.6			
8	0.9D + 1.0W	266.6	*	*	*	1.04	78.9	88.5			
9	0.9D - 1.0W	248.2	*	*	*	1.04	-17.2	-23.3			
* Not o	covered by the reference										

5. Moment Magnification along Length of Compression Member

In sway frames, second-order effects shall be considered along the length of columns. It shall be permitted to account for these effects using <u>ACI 318-19 (6.6.4.5)</u> (Nonsway frame procedure), where C_m is calculated using M_1 and M_2 from <u>ACI 318-19 (6.6.4.6.1)</u> as follows: <u>ACI 318-19 (6.6.4.6.4)</u>

$$M_{c2} = \delta M_2$$
 ACI 318-19 (6.6.4.5.1)

Where:

 M_2 = the second-order factored moment.

 $\delta = \text{ magnification factor} = \frac{C_m}{1 - \frac{P_u}{0.75P_c}} \ge 1.0$ <u>ACI 318-19 (6.6.4.5.2)</u>

$$P_{c} = \frac{\pi^{2} (EI)_{eff}}{(kl_{u})^{2}}$$
 ACI 318-19 (6.6.4.4.2)

Where:

$$(EI)_{eff} = \begin{cases} (a) & \frac{0.4E_cI_g}{1+\beta_{dns}} \\ (b) & \frac{0.2E_cI_g + E_sI_{se}}{1+\beta_{dns}} \\ (c) & \frac{E_cI}{1+\beta_{dns}} \end{cases} \end{cases}$$
 ACI 318-19 (6.6.4.4.4)

There are three options for calculating the effective flexural stiffness of slender concrete columns $(EI)_{eff}$. The second equation provides accurate representation of the reinforcement in the section and will be used in this example and is also used by the solver in <u>spColumn</u>. Further comparison of the available options is provided in "<u>Effective</u> <u>Flexural Stiffness for Critical Buckling Load of Concrete Columns</u>" technical note.

5.1. Gravity Load Combination #2 (Gravity Loads Only)

$$I_{column} = 0.70 \times \frac{c^4}{12} = 0.70 \times \frac{18^4}{12} = 6,124 \text{ in.}^4$$

$$\underline{ACI 318-19 (Table 6.6.3.1.1(a))}$$

$$E_c = 57,000 \times \sqrt{f_c'} = 57,000 \times \sqrt{4000} = 3,605 \text{ ksi}$$

$$\underline{ACI 318-19 (19.2.2.1.b)}$$

 β_{dns} is the ratio of maximum factored sustained axial load to maximum factored axial load associated with the same load combination. <u>ACI 318-19 (6.6.4.4.4)</u>

$$P_{u,sustained} = 1.2 \times 286 = 343.20 \text{ kip}$$

Structure Point CONCRETE SOFTWARE SOLUTIONS

1

 $P_u = 1.2 \times 286 + 1.6 \times 48.9 + 0.5 \times 9.98 = 426.43$ kip

 $\Psi_{R} = 0.0$ (Column essentially fixed at base)

$$\beta_{dns} = \frac{P_{u,sustained}}{P_u} = \frac{343.20}{426.43} = 0.805 < 1.00 \quad \rightarrow \quad \therefore \ \beta_{dns} = 0.805$$

$$\Psi_{A} = \frac{\left(\sum \frac{EI}{l_{c}}\right)_{columns}}{\left(\sum \frac{EI}{l}\right)_{beams}} = \frac{110 + 160}{133} = 2.027$$
 (Calculated previously)

ACI 318-19 (Figure R6.2.5.1)

ACI 318-19 (Figure R6.2.5.1)

Using Figure R6.2.5.1(a) from ACI 318-19 $\rightarrow k = 0.656$ as shown in the figure below for the exterior column.

Figure 5 – Effective Length Factor (k) Calculations for Exterior Column (Nonsway)

With 8-#6 reinforcement equally distributed on all sides $I_{se} = 111.5$ in.⁴ (Ref. uses approximate value of 150 in.⁴ in lieu of exact value calculated by spColumn).

$$(EI)_{eff} = \frac{0.2E_c I_g + E_s I_{se}}{1 + \beta_{dns}}$$

$$(EI)_{eff} = \frac{0.2 \times 3,605 \times 6,124 + 29,000 \times 111.5}{1 + 0.805} = 5.3 \times 10^6 \text{ kip-in.}^2$$

$$\begin{split} P_{i} &= \frac{\pi^{2} \times 5.3 \times 10^{6}}{(0.656 \times 15.5 \times 12)^{2}} = 3,504.43 \text{ kip} \\ P_{i} &= 1.2 \times 286 + 1.6 \times 48.9 + 0.5 \times 9.98 = 426.43 \text{ kip} \\ M_{i} &= 1.2 \times 286 + 1.6 \times 48.9 + 0.5 \times 9.98 = 426.43 \text{ kip} \\ M_{i} &= 0.6 + 0.4 \frac{M_{i}}{M_{2}} \\ M_{2} &= M_{2,2^{34}} = 65.2 \text{ ft.kip (as concluded from section 4)} \\ M_{i} &= M_{1,2^{34}} = 61.8 \text{ ft.kip (as concluded from section 4)} \\ M_{i} &= M_{1,2^{34}} = 61.8 \text{ ft.kip (as concluded from section 4)} \\ M_{i} &= M_{1,2^{34}} = 61.8 \text{ ft.kip (as concluded from section 4)} \\ C_{m} &= 0.6 - 0.4 \left(\frac{61.8}{65.2}\right) = 0.221 \\ \mathcal{S} &= \frac{C_{m}}{1 - \frac{P_{i}}{0.75P_{c}}} \geq 1.0 \\ \mathcal{S} &= \frac{0.221}{1 - \frac{426.43}{0.75 \times 3,504.43}} = 0.264 < 1.00 \rightarrow \delta = 1.00 \\ \mathcal{M}_{mm} &= P_{e} (0.6 + 0.03h) \\ \mathcal{M}_{mm} &= 426.4 \text{ kip, and } h = \text{ the section dimension in the direction being considered = 18 in.} \\ \mathcal{M}_{mm} &= 426.43 \left(\frac{0.6 + 0.03 \times 18}{12}\right) = 40.51 \text{ ft.kip} \\ \mathcal{M}_{i} &= 61.80 \text{ ft.kip} > \mathcal{M}_{i} = 61.80 \text{ ft.kip} \\ \mathcal{M}_{i} &= 1.00 \times 61.80 = 61.80 \text{ ft.kip} \\ \mathcal{M}_{i} &= 1.00 \times 61.80 = 61.80 \text{ ft.kip} \\ \mathcal{M}_{i} &= 652.0 \text{ ft.kip} > M_{2} = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= \delta M_{2} \\ \mathcal{M}_{i,2} &= \delta M_{2} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,2} &= 1.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,3} &= 0.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,4} &= 0.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,5} &= 0.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,5} &= 0.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,5} &= 0.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{M}_{i,5} &= 0.00 \times 65.20 = 65.20 \text{ ft.kip} \\ \mathcal{$$

 M_{c1} and M_{c2} will be considered separately to ensure proper comparison of resulting magnified moments against negative and positive moment capacities of unsymmetrical sections as can be seen in the following figure.

spcolumn

Figure 6 - Column Interaction Diagram for Unsymmetrical Section

5.2. Lateral Load Combination #6 (Gravity Plus Wind Loads)

$$I_{column} = \frac{c^4}{12} = \frac{18^4}{12} = 6,124 \text{ in.}^4$$

$$\underline{ACI 318-19 (Table 6.6.3.1.1(a))}$$

$$E_c = 57,000 \times \sqrt{f_c'} = 57,000 \times \sqrt{4000} = 3,605 \text{ ksi}$$

$$\underline{ACI 318-19 (19.2.2.1.b)}$$

 β_{dns} is the ratio of maximum factored sustained axial load to maximum factored axial load associated with the same load combination. <u>ACI 318-19 (6.6.4.4.4)</u>

$$\begin{aligned} P_{u,sustained} &= 1.2 \times 286 = 343.20 \text{ kip} \\ P_{u} &= 1.2 \times 286 + 0.5 \times 48.9 + 0.5 \times 9.98 + 1.6 \times 9.2 = 381.84 \text{ kip} \\ \beta_{dns} &= \frac{P_{u,sustained}}{P_{u}} = \frac{343.20}{381.84} = 0.899 < 1.00 \rightarrow \therefore \beta_{dns} = 0.899 \\ \Psi_{A} &= \frac{\left(\sum \frac{EI}{l_{c}}\right)_{columns}}{\left(\sum \frac{EI}{l}\right)_{beams}} = \frac{110 + 160}{133} = 2.027 \text{ (Calculated previously)} \end{aligned}$$

 $\Psi_{B} = 0.0$ (Column essentially fixed at base)

ACI 318-19 (Figure R6.2.5.1)

Using Figure R6.2.5.1(a) from ACI 318-19 $\rightarrow k = 0.656$

With 8-#6 reinforcement equally distributed on all sides $I_{se} = 111.5$ in.⁴ (Ref. uses approximate value of 150 in.⁴ in lieu of exact value calculated by <u>spColumn</u>).

$$\begin{split} (EI)_{eff} &= \frac{0.2E_{e}I_{x} + E_{e}I_{x}}{1 + \beta_{hu}} & ACI 318-19 (6.6.4.4.4(b)) \\ (EI)_{eff} &= \frac{0.2 \times 3,605 \times 6,124 + 29,000 \times 111.5}{1 + 0.899} = 5.02 \times 10^{6} \text{ kip-in.}^{2} \\ P_{e} &= \frac{\pi^{2} \times 5.02 \times 10^{6}}{(0.899 \times 15.5 \times 12)^{2}} = 3,330.97 \text{ kip} \\ P_{u} &= 1.2 \times 286 + 0.5 \times 48.9 + 0.5 \times 9.98 + 1.6 \times 9.2 = 381.84 \text{ kip} & ACI 318-19 (6.6.4.5.3a) \\ C_{m} &= 0.6 + 0.4 \frac{M_{1}}{M_{2}} & ACI 318-19 (6.6.4.5.3a) \\ M_{1} &= M_{1,2}\pi^{u} = 96.56 \text{ fl.kip (as concluded from section 4)} & ACI 318-19 (6.6.4.6.4) \\ M_{1} &= M_{1,2}\pi^{u} = 96.56 \text{ fl.kip (as concluded from section 4)} & ACI 318-19 (6.6.4.6.4) \\ Since the column is bent in double curvature, M_{1}/M_{2} is positive. $ACI 318-19 (6.6.4.5.3) \\ C_{m} &= 0.6 - 0.4 \left(\frac{107.1}{95.6}\right) = 0.239 \\ \delta &= \frac{C_{m}}{1 - \frac{P_{s}}{0.75P_{s}}} \geq 1.0 & ACI 318-19 (6.6.4.5.2) \\ \delta &= \frac{0.239}{1 - \frac{381.84}{0.75 \times 3,330.97}} = 0.283 < 1.00 \rightarrow \delta = 1.00 \\ M_{mm} &= P_{u} (0.6 + 0.03h) & ACI 318-19 (6.6.4.5.4) \\ Where P_{u} &= 381.8 \text{ kip, and } h = \text{the section dimension in the direction being considered = 18 in.} \\ M_{mm} &= 96.56 \text{ fl.kip } M_{min} = 36.27 \text{ fl.kip} \rightarrow M_{1} = 96.56 \text{ fl.kip} & ACI 318-19 (6.6.4.5.4) \\ M_{ei} &= \delta M_{1} & ACI 318-19 (6.6.4.5.4) \\ M_{ei} &= \delta M_{1} & ACI 318-19 (6.6.4.5.4) \\ \end{array}$$$

$$M_2 = 107.12 \text{ ft.kip} > M_{2,\min} = 36.27 \text{ ft.kip} \rightarrow M_2 = 107.12 \text{ ft.kip}$$

ACI 318-19 (6.6.4.5.4)

 $M_{c2} = \delta M_2$

<u>ACI 318-19 (6.6.4.5.1)</u>

 $M_{c2} = 1.00 \times 107.12 = 107.12$ ft.kip

 M_{c1} and M_{c2} are considered separately to ensure proper comparison of resulting magnified moments against negative and positive moment capacities of unsymmetrical sections.

A summary of the moment magnification factors and magnified moments for the exterior column for all load combinations using both equation options ACI 318-19 (6.6.4.6.2(a)) and (6.6.4.6.2(b)) to calculate δ_s is provided in the table below for illustration and comparison purposes.

	Table 5 - Factored Axial loads and Magnified Moments along Exterior Column Length												
	Load Combination	Avial Load	τ	Jsing ACI 6	.6.4.6.2(a)	U	Using ACI 6.6.4.6.2(b)						
No.		kip	δ	M _{c1} ,ft- kip	M _{c2} , ft- kip	δ	M _{c1} , ft- kip	M _{c2} , ft- kip					
1	1.4D	400.4	*	*	*	1	48.0	50.7					
2	$1.2D + 1.6L + 0.5L_r$	426.4	1	61.8	65.2	1	61.8	65.2					
3	$1.2D + 0.5L + 1.6 \ L_r$	383.6	*	*	*	1	47.6	50.2					
4	$1.2D + 1.6L_r + 0.8W$	366.5	*	*	*	1	80.3	88.9					
5	$1.2D + 1.6L_r - 0.8W$	351.8	*	*	*	1.13	37.9	37.9					
6	$1.2D + 0.5L + 0.5L_r + 1.0W$	381.8	1	97.7	108.4	1	96.6	107.1					
7	$1.2D + 0.5L + 0.5L_r - 1.0W$	363.4	*	*	*	1	34.5	34.5					
8	0.9D + 1.0W	266.6	*	*	*	1	78.9	88.5					
9 0.9D - 1.0W 248.2 * * 1 23.6 23.								23.6					
* Not	covered by the reference												

For column design ACI 318 requires the second-order moment to first-order moment ratios should not exceed 1.40.If this value is exceeded, the column design needs to be revised.ACI 318-19 (6.2.5.3)

	Table 6 - Second-Order Moment to First-Order Moment Ratios									
No	Lood Combination	Using ACI (5.6.4.6.2(a)	Using ACI 6.6.4.6.2(b)						
INO.	Load Combination	$M_{c1}/M_{1(1st)}$	$M_{c2}\!/M_{2(1st)}$	$M_{c1}/M_{1(1st)}$	$M_{c2}\!/\!M_{2(1st)}$					
1	1.4D	**	**	1.00^{*}	1.00^{*}					
2	$1.2D + 1.6L + 0.5L_r$	1.00^{*}	1.00^{*}	1.00^{*}	1.00^{*}					
3	$1.2D + 0.5L + 1.6 L_r$	**	**	1.00^{*}	1.00^{*}					
4	$1.2D + 1.6L_r + 0.8W$	**	**	1.03	1.03					
5	$1.2D + 1.6L_r - 0.8W$	**	**	1.13	1.13					
6	$1.2D + 0.5L + 0.5L_r + 1.0W$	1.04	1.04	1.03	1.03					
7	$1.2D + 0.5L + 0.5L_r - 1.0W$	**	**	1.00^{*}	1.00^{*}					
8	0.9D + 1.0W	**	**	1.02	1.02					
9	9 0.9D - 1.0W ** ** 1.00* 1.00*									
* Cutoff than M ** Not cov	* Cutoff value of M_{min} is applied to $M_{I(1st)}$ and $M_{2(1st)}$ in order to avoid unduly large ratios in cases where $M_{I(1st)}$ and $M_{2(1st)}$ moments are smaller than M_{min} . ** Not covered by the reference									

6. Column Design

Based on the factored axial loads and magnified moments considering slenderness effects, the capacity of the assumed column section (18 in. x 18 in. with 8-#6 bars distributed all sides equal) will be checked and confirmed to finalize the design. A column interaction diagram will be generated using strain compatibility analysis, the detailed procedure to develop column interaction diagram can be found in "Interaction Diagram – Tied Reinforced Concrete Column Design Strength (ACI 318-19)" example.

The axial compression capacity ϕP_n for all load combinations will be set equals to P_u , then the moment capacity ϕM_n associated to ϕP_n will be compared with the magnified applied moment M_u . The design check for load combination #6 is shown below for illustration. The rest of the checks for the other load combinations are shown in the following Table.

Figure 7 – Strains, Forces, and Moment Arms (Load Combination #6)

The following procedure is used to determine the nominal moment capacity by setting the design axial load capacity, ϕP_n , equal to the applied axial load, P_u and iterating on the location of the neutral axis.

6.1. c, a, and strains in the reinforcement

Try c = 10.679 in.

Where c is the distance from the fiber of maximum compressive strain to the neutral axis.

	<u>ACI 318-19 (22.2.2.4.2)</u>
$a = \beta_1 \times c = 0.85 \times 10.679 = 9.077$ in.	<u>ACI 318-19 (22.2.2.4.1)</u>
Where:	
$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4000)}{1000} = 0.85 - \frac{0.05 \times (4000 - 4000)}{1000} = 0.85$	<u>ACI 318-19 (Table 22.2.2.4.3)</u>

 $\varepsilon_{cu} = 0.003$ <u>ACI 318-19 (22.2.2.1)</u>

~

ACI 318-19 (Table 21.2.2)

$$\varepsilon_{y} = \frac{f_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207$$

$$\varepsilon_{s} = (d_{1} - c) \times \frac{0.003}{c} = (15.50 - 10.679) \times \frac{0.003}{10.679} = 0.00135 \text{ (Tension)} < \varepsilon_{y}$$

 \therefore tension reinforcement has not yielded
 $\therefore \phi = 0.65$

$$\varepsilon_{s1}' = (c - d_{2}) \times \frac{0.003}{c} = (10.679 - 2.50) \times \frac{0.003}{10.679} = 0.0023 \text{ (Compression)} > \varepsilon_{y}$$

 $\varepsilon_{s2}' = \left(c - \frac{h}{2}\right) \times \frac{0.003}{c} = (10.679 - 9.00) \times \frac{0.003}{10.679} = 0.00047 \text{ (Tension)} < \varepsilon_{y}$

6.2. Forces in the concrete and steel

$$C_c = 0.85 \times f'_c \times a \times b = 0.85 \times 4,000 \times 9.078 \times 18 = 555.5 \text{ kip}$$

ACI 318-19 (22.2.2.4.1)

$$f_s = \varepsilon_s \times E_s = 0.00135 \times 29,000,000 = 39,276$$
 psi

$$T_s = f_s \times A_{s1} = 39,276 \times (3 \times 0.44) = 51.8 \text{ kip}$$

Since $\varepsilon'_{s1} > \varepsilon_y \rightarrow$ compression reinforcement has yielded

$$\therefore f_{s1}' = f_y = 60,000 \text{ psi}$$

Since $\varepsilon'_{s2} < \varepsilon_y \rightarrow$ compression reinforcement has not yielded

$$\therefore f'_{s2} = \varepsilon'_{s2} \times E_s = 0.00047 \times 29,000,000 = 13,679 \text{ psi}$$

The area of the reinforcement in this layer has been included in the area (*ab*) used to compute C_c . As a result, it is necessary to subtract $0.85f_c$ ' from f_s ' before computing C_s :

$$C_{s1} = (f'_{s1} - 0.85f'_c) \times A'_{s1} = (60,000 - 0.85 \times 4,000) \times (3 \times 0.44) = 74.7 \text{ kip}$$

$$C_{s2} = (f'_{s2} - 0.85f'_{c}) \times A'_{s2} = (13,679 - 0.85 \times 4,000) \times (2 \times 0.44) = 9.0 \text{ kip}$$

6.3. ϕP_n and ϕM_n

$$P_n = C_c + C_{s1} + C_{s2} - T_s = 555.5 + 74.7 + 9.0 - 51.8 = 587.4$$
 kip

$$\phi P_n = 0.85 \times 587.4 = 381.8 \text{ kip} = P_u$$

The assumed value of c = 10.679 in. is correct.

$$M_{n} = C_{c} \times \left(\frac{h}{2} - \frac{a}{2}\right) + C_{s1} \times \left(\frac{h}{2} - d_{2}\right) + C_{s2} \times \left(\frac{h}{2} - \frac{h}{2}\right) + T_{s} \times \left(d_{1} - \frac{h}{2}\right)$$
$$M_{n} = 555.5 \times \left(\frac{18}{2} - \frac{9.077}{2}\right) + 74.7 \times \left(\frac{18}{2} - 2.5\right) + 9.0 \times \left(\frac{18}{2} - \frac{18}{2}\right) + 51.8 \times \left(15.5 - \frac{18}{2}\right) = 275 \text{ kip.ft}$$

	Table 7 – Exterior Column Axial and Moment Capacities												
No.	P _u , kip	$M_u = M_{2(2nd)}, ft-kip$	c, in.	$\varepsilon_t = \varepsilon_s$	φ	φP _n , kip	φM _n , kip.ft						
1	400.4	50.7	11.07	0.00120	0.65	400.4	176.5						
2	426.4	65.2	11.63	0.00100	0.65	426.4	172.7						
3	383.6	50.2	10.72	0.00134	0.65	383.6	178.6						
4	366.5	88.9	10.32	0.00150	0.65	366.5	180.8						
5	351.8	33.4	10.02	0.00164	0.65	351.8	182.3						
6	381.8	107.1	10.68	0.00135	0.65	381.8	178.8						
7	363.4	34.5	10.26	0.00153	0.65	363.4	181.1						
8	266.6	88.5	7.24	0.00342	0.76	266.6	203.7						
9	248.2	23.6	6.64	0.00401	0.81	248.2	208.6						

 $\phi M_n = 0.85 \times 275 = 178.81$ kip.ft > $M_u = M_{c2} = 107.1$ kip.ft

Since $\phi M_n > M_u$ for all $\phi P_n = P_u$, use 18 x 18 in. column with 8-#6 bars.

7. Column Interaction Diagram - spColumn Software

<u>spColumn</u> is a StructurePoint software program that performs the analysis and design of reinforced concrete sections subjected to axial force combined with uniaxial or biaxial bending. Using the provisions of the Strength Design Method and Unified Design Provisions, slenderness considerations are used for moment magnification due to second order effect (P-Delta) for sway and non-sway frames.

For this column section, investigation mode is used, service loads are defined, and slenderness effects are considered using ACI 318-19 provisions. The model input parameters, results, and report (for load combination #6) are shown below.

Figure 9 – spColumn Model Editor

sp	Sler	nderness						×
≣↓	~	Columns Design Column - X Axis	Design Column					
1		Design Column - Y Axis Columns Above/Below	Design column clear height (lx)	15.5	ft			
	ř	Beams X - Beams	Sway Criteria					
	~	Y - Beams Properties	O Nonsway frame	(Σ Pc) / (Pc)		30.187		
		Slenderness Factors	Sway frame	(Σ Pu) / (Pu)		5.319)	
				2nd order effects along length				
			Effective Length Factors					
			 Compute 'k' factors Input 'k' factors k(ns) k(s) 	End conditions:	•	0	O Py to Y -	O Axis
					C	K	C	ancel

Figure 10 – Defining Slenderness – Load Combination #6 (spColumn)

Figure 11 – Defining Columns Above / Below (spColumn)

sp	Slen	derness						×
≣↓	~	Columns Design Column - X Axis	X - Beams (P	erpendicular to X)				
-T		Design Column - Y Axis Columns Above/Below			Span(c/c)	Span(c/e	c)	Copy to Y - Beams
	*	Beams X - Beams	Copy to	l → all L)		opy to 🔍 🔶 all
		Y - Beams	Beam	Rectangular *		Bear	m None	*
	~	Properties	Span(c/c)	32	ft			
		Slenderness Factors	Width (W)	18	in			
			Depth (D)	30	in			
			Inertia 🗸	40500	in ⁴			
			f'c	4	ksi			
			Ec 🗸	3605	ksi			
		Z Y X X			7			
							ОК	Cancel

Figure 12 – Defining Beams in X-Direction (spColumn)

sp	Loads					—	□ ×
≣↓	✓ Loads Factored Loads	Service Loads					
- 1	Service Loads	Load Case	Р	Mx (Top)	Mx (Bot)	Му (Тор)	My (Bot)
	 Modes (No Loads) 	Name	kips	kip-ft	kip-ft	kip-ft	kip-ft
		Dead	286	36.2	34.3	0	0
		Live	48.9	13.6	12.9	0	0
		Wind	9.2	53.8	46.3	0	0
		EQ	0	0	0	0	0
		Snow	9.98	0	0	0	0
		+ New × De	elete 🛛 🖉 Clear	≡× Remove Duplicate	es	Impo	rt / Export 😶
	Positive Moment Loads (Top) (Bot) Mx Mx My Mx Z	> 1 D [286,	36.2, 34.3, 0, 0]; L [4	8.9, 13.6, 12.9, 0, 0]; W	' [9.2, 53.8, 46.3, 0, 0];	E [0, 0, 0, 0, 0, 0]; S [9.9	8, 0, 0, 0, 0]
						ОК	Cancel

Figure 13 – Defining Loads / Modes (spcolumn
--

sp	Defi	nitions								×
≣↓ =↑	~	Properties Concrete	Load Comb	inations						
1		Reinforcing Steel	+ New	× Delete	⊖ Defau	lt				
		Reduction Factors Design Criteria	Combo	Dead	Live	Wind	EQ	Snow		
		Bar Set	>	U1 1.2	0.5	1	0	0.5		
	~	Load Case/Combo.								
		Load Combinations								
									OK	Cancel

Figure 14 – Defining Load Combination #6 (spColumn)

<u>Figure 15 – Column Section Interaction Diagram about X-Axis – Design Check for Load Combination #6</u> (spColumn)

spColumn v10.00 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright - 1988-2021, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Structure|Point Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1

STRUCTUREPOINT - spColumn v10.00 (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1	Page 2 8/11/2022
E:\StructurePoint\spColumn\Slenderness Column - Wight LC #6.colx	3:11 PM
O - u t - u t -	
Contents	
1. General Information	3
2. Material Properties	3
2.1. Concrete	3
2.2. Steel	3
3. Section	3
3.1. Shape and Properties	3
3.2. Section Figure	4
4. Reinforcement	4
4.1. Bar Set: ASTM A615	4
4.2. Confinement and Factors	4
4.3. Arrangement	4
5. Loading	5
5.1. Load Cases	5
5.2. Load Combinations	5
5.3. Service Loads	5
6. Slendemess	5
6.1. Sway Criteria	5
6.2. Columns	5
6.3. X - Beams	5
7. Moment Magnification	6
7.1. General Parameters	6
7.2. Effective Length Factors	6
7.3. Magnification Factors: X - axis	6
8. Factored Moments	6
8.1. X - axis	6
9. Control Points	6
10. Factored Loads and Moments with Corresponding Capacity Ratios	7
11. Diagrams	8
11.1. PM at θ=0 [deg]	8

List of Figures

ure 1: Column section

Page | **3** 8/11/2022 3:11 PM

1. General Information

File Name	E:\Struc\Slenderness Column - Wight LC #6.colx		
Project	Slenderness - Example 12-3		
Column	Exterior		
Engineer	StructurePoint		
Code	ACI 318-19		
Bar Set	ASTM A615		
Units	English		
Run Option	Investigation		
Run Axis	X - axis		
Slenderness	Considered		
Column Type	Structural		
Capacity Method	Moment capacity		

2. Material Properties

2.1. Concrete

Туре	Standard			
f' _c	4 ksi			
E₀	3605 ksi			
f _c	3.4 ksi			
ε _u	0.003 in/i			
β1	0.85			

2.2. Steel

Туре	Standard				
fy	60	ksi			
E,	29000	ksi			
ε _{ty}	0.00206897	in/in			

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	18	in
Depth	18	in
A _g	324	in²
l _x	8748	in4
l _y	8748	in4
Г _х	5.19615	in
Гy	5.19615	in
X _o	0	in
Yo	0	in

Page | 4 8/11/2022 3:11 PM

3.2. Section Figure

Figure 1: Column section

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in ²		in	in²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled \$\phi\$, (b)	0.9
Compression controlled ϕ , (c)	0.65

4.3. Arrangement

Pattern	All sides equal		
Bar layout	Rectangular		
Cover to	Transverse bars		
Clear cover	1.75 in		
Bars	8 #6		

Page | **5** 8/11/2022 3:11 PM

Total steel area, A _s	3.52 in ²
Rho	1.09 %
Minimum clear spacing	5.75 in

5. Loading 5.1. Load Cases

Case	Туре	Sustained Load
		%
A	Dead	100
В	Live	0
С	Wind	0
D	EQ	0
E	Snow	0

5.2. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.200	0.500	1.000	0.000	0.500

5.3. Service Loads

No.	Load Case	Axial Load	Mx @ Top	Mx @ Bottom	My @ Top	My @ Bottom
		kip	k-ft	k-ft	k-ft	k-ft
1	Dead	286.00	36.20	34.30	0.00	0.00
1	Live	48.90	13.60	12.90	0.00	0.00
1	Wind	9.20	53.80	46.30	0.00	0.00
1	EQ	0.00	0.00	0.00	0.00	0.00
1	Snow	9.98	0.00	0.00	0.00	0.00

6. Slenderness

6.1. Sway Criteria	
X-Axis	Sway column
2 nd order effects along length	Considered
ΣP°	30.19 x P _o
ΣΡι	5.32 x P _u

6.2. Columns

Column	Axis	Height	Width	Depth/Dia.	I	f.	E,
		ft	in	in	in4	ksi	ksi
Design	Х	15.5	18	18	8748	4	3605
Above	Х	11.5	18	18	8748	4	3605
Below	Х	(no column specified)					

6.3. X - Beams

Beam	Length	Width	Depth	T	f.	E
	ft	in	in	in ⁴	ksi	ks
Above Left	32	18	30	40500	4	3605
Above Right	(no beam specified)					
Below Left	Rigid beam					
Below Right	Rigid beam					

Page | **6** 8/11/2022 3:11 PM

7. Moment Magnification 7.1. General Parameters

Factors	Code defaults
Stiffness reduction factor, ϕ_{κ}	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
$0.2 E_c I_g + E_s I_{se}$ (X-axis)	9.54e+006 kip-in
Minimum eccentricity, exmin	1.14 in

7.2. Effective Length Factors

Axis	Ψ_{top}	Ψ_{bottom}	k (Nonsway)	k (Sway)	kl _u /r
Х	2.027	0.000	0.656	1.282	45.90

7.3. Magnification Factors: X - axis

Load			At	Ends					Along Leng	th		
Combo		∑Pu	Pc	ΣP。	β_{ds}	β _{ds} δ _s P _u k'l _u /r P _c β _{dns}		Pu k'lu/r Po f		Cm	δ	
		kip	kip	kip			kip		kip			
1	U1	2031.01	1655.66	49979.48	0.000	1.057	381.84	(N/A)	3331.44	0.899	0.239	1.000

8. Factored Moments

NOTE: Each loading combination includes the following cases: Top - At column top Bot - At column bottom

8.1. X - axis

Load				1 st Order				2 nd Order		Ratio
Com	00		M _{ns}	Ms	Mu	M _{min}		Mi	M。	2 nd /1 st
			k-ft	k-ft	k-ft	k-ft		k-ft	k-ft	
1	U1	Тор	50.24	53.80	104.04	36.27	M ₂ =	107.12	107.12	1.030
1	U1	Bot	-47.61	-46.30	-93.91	-36.27	M1=	-96.56	-96.56	1.028

9. Control Points

About	Point	Р	X-Moment	Y-Moment	NA Depth	d _t Depth	٤t	ф
		kip	k-ft	k-ft	in	in		
X	@ Max compression	845.5	0.00	0.00	49.94	15.50	-0.00207	0.65000
X	@ Allowable comp.	676.4	96.14	0.00	17.64	15.50	-0.00036	0.65000
X	@ $f_s = 0.0$	591.6	131.67	0.00	15.50	15.50	0.00000	0.65000
X	@ $f_s = 0.5 f_y$	421.5	173.45	0.00	11.53	15.50	0.00103	0.65000
Х	@ Balanced point	308.2	186.05	0.00	9.17	15.50	0.00207	0.65000
X	@ Tension control	214.3	215.41	0.00	5.76	15.50	0.00507	0.90000
Х	@ Pure bending	0.0	117.01	0.00	2.52	15.50	0.01545	0.90000
X	@ Max tension	-190.1	0.00	0.00	0.00	15.50	9.99999	0.90000
-X	@ Max compression	845.5	0.00	0.00	49.94	15.50	-0.00207	0.65000
-X	@ Allowable comp.	676.4	-96.14	0.00	17.64	15.50	-0.00036	0.65000
-X	@ $f_s = 0.0$	591.6	-131.67	0.00	15.50	15.50	0.00000	0.65000
-X	@ $f_s = 0.5 f_y$	421.5	-173.45	0.00	11.53	15.50	0.00103	0.65000
-X	@ Balanced point	308.2	-186.05	0.00	9.17	15.50	0.00207	0.65000
-X	@ Tension control	214.3	-215.41	0.00	5.76	15.50	0.00507	0.90000
-X	@ Pure bending	0.0	-117.01	0.00	2.52	15.50	0.01545	0.90000
-X	@ Max tension	-190.1	0.00	0.00	0.00	15.50	9.99999	0.90000

Page | **7** 8/11/2022 3:11 PM

10. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method. Each loading combination includes the following cases: Top - At column top Bot - At column bottom

No. Load Combo				Demano	Capaci	ity	Parame	Capacity			
				Pu	Mux	φPո	φM _{nx}	NA Depth	٤t	φ	Ratio
				kip	k-ft	kip	k-ft	in			
1	1	U1	Тор	381.84	107.12	381.84	178.80	10.68	0.00135	0.650	0.60
2	1	U1	Bot	381.84	-96.56	381.84	-178.80	10.68	0.00135	0.650	0.54

Page | **8** 8/11/2022 3:11 PM

11. Diagrams 11.1. PM at θ=0 [deg]

•	• •									
•	↓ • • • • 18 x 18 in		Ĩ	fs=0		140	0 T P [kip]	a construction of the second	fs=0	
				11		(Pmax)		(Pmax)	Z.	
General Informatio	n oli i i i i i i i i i i i i i i i i i i	fs=0.	ōfy	1	for				1	fs=0.5fy
Project	Siendernesxample 12-3			i	15=0	\	_		ì	
Column	Exterior Otherstein I		1	1		X	+	X	1	
Engineer	StructurePoint		1	fs=0.5fy	/				fs=0.5fy	
Code	ACI 318-19		1		X	0		$\langle 1 \rangle$	/	
Bar Set	ASTM A015		``			+4	T	/ +'	1	
Units Bup Option	English			1						
Run Option	V avia			1.			+ /	/)	
Slandarness	Considered			1				1.	1	
Column Type	Structural		2	20 5				1	M	[k-ft]
Capacity Method	Moment capacity		-				* 1	1.	+ +	1
Suparaly motion	montonitoupaony		-300			" and the second	1.		3	00
Materials						23		(D. 1.)		
r _c	4 ksi					(Pmin)		(Pmin)		
Ec	3605 KSI									
	60 kai					-40	0 т			
F	29000 ksi		PM a	at 0.0 [de	eg]					
L ₈	25000 KSI									
Section										
Туре	Rectangular									
Width	18 in									
Depth	18 in	No.	Loa	d Combo		Pu	Mux	φPn	φM _{nx}	Capacity
A _g	324 in ²					kip	k-ft	kip	k-ft	Ratio
l _x	8748 in ⁴	1	1	U1	Тор	381.8	107.1	381.84	178.80	0.60
ly	8748 in4	2	1	U1	Bot	381.8	-96.6	381.84	-178.80	0.54
Reinforcement									Max Capar	tity Ratio: 0.60
Pattern	All sides equal									
Bar layout	Rectangular									
Cover to	Transverse bars									
Clear cover	1.75 in									
Bars	8 #6									
Confinement type	Tied									
Total steel area A	3.52 in ²									
Rho	1.09 %									
Min. clear spacing	5.75 in									

8. Summary and Comparison of Design Results

Analysis and design results from the hand calculations above are compared for the one load combination used in the reference (Example 12-3) and exact values obtained from <u>spColumn</u> model.

Table 8 – Parameters for Moment Magnification along the Column Length											
	Q	k	β_{dns}	Cm	I _{se}	P _c , kip	δ	M _{2(min)} , ft-kip	M _{2(2nd)} , ft-kip		
Load Combination #2											
Hand	0.085	0.66^{*}	0.81	0.221	111.5‡	3,504	1 > 0.264	40.5	65.2		
Reference	0.085	1.00^{+}	0.81	0.220	150.0^{+}	1,680	1 > 0.330	40.5	65.2		
<u>spColumn</u>		0.66 [‡]	0.81	0.221	111.5‡	3,505	1 > 0.264	40.5	65.2		
					Load Co	mbination #6					
Hand	0.076	0.66^*	0.90	0.239	111.5‡	3,331	1 > 0.283	36.3	107.1		
Reference	0.076								107.0		
<u>spColumn</u>		0.66‡	0.90	0.239	111.5‡	3,331	1 > 0.282	36.3	107.1		
* From nomographs (A † Conservatively estim	[*] From nomographs (ACI 318 charts) [†] Conservatively estimated not using exact formula without impact on the final results in this special case										

[‡] Exact formulated answer

In this table, a detailed comparison for all considered load combinations are presented for comparison.

	Table 9 - Factored Axial loads and Magnified Moments at Column Ends												
No	P _u ,	kip	k	S	δ	s	M _{1(2nd)}	, ft-kip	M _{2(2nd)} , ft-kip				
INO.	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>			
1	400.4	400.4	1.282	1.282	1.06	1.06	48.0	48.0	50.7	50.7			
2	426.4	426.4	1.282	1.282	1.07	1.07	61.8	61.8	65.2	65.2			
3	383.6	383.6	1.282	1.282	1.06	1.06	47.6	47.6	50.2	50.2			
4	366.5	366.5	1.282	1.282	1.06	1.06	80.2	80.3	88.9	88.9			
5	351.8	351.8	1.282	1.282	1.05	1.05	2.1	2.1	-1.9	-1.9			
6	381.8	381.8	1.282	1.282	1.06	1.06	96.6	96.6	107.1	107.1			
7	363.4	363.4	1.282	1.282	1.06	1.06	-1.3	-1.3	-6.6	-6.6			
8	266.6	266.6	1.282	1.282	1.04	1.04	79.0	79.0	88.5	88.5			
9	248.2	248.2	1.282	1.282	1.04	1.04	-17.2	-17.2	-23.3	-23.3			

	Table 10 - Factored Axial loads and Magnified Moments along Column Length												
Na	k _{ns}		δ		M _{c1} , ft-kip		M _{c2} , ft-kip		$M_{c1}/M_{1(1st)}$		$M_{c2}/M_{2(1st)}$		
NO.	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	
1	0.656	0.656	1.00	1.00	48.0	48.0	50.7	50.7	1.00	1.00	1.00	1.00	
2	0.656	0.656	1.00	1.00	61.8	61.8	65.2	65.2	1.00	1.00	1.00	1.00	
3	0.656	0.656	1.00	1.00	47.6	47.6	50.2	50.2	1.00	1.00	1.00	1.00	
4	0.656	0.656	1.00	1.00	80.2	80.3	88.9	88.9	1.03	1.03	1.03	1.03	
5	0.656	0.656	1.13	1.13	37.9	37.9	37.9	37.9	1.13	1.13	1.13	1.13	
6	0.656	0.656	1.00	1.00	96.6	96.6	107.1	107.1	1.03	1.03	1.03	1.03	
7	0.656	0.656	1.00	1.00	34.5	34.5	34.5	34.5	1.00	1.00	1.00	1.00	
8	0.656	0.656	1.00	1.00	79.0	79.0	88.5	88.5	1.02	1.02	1.02	1.02	
9	0.656	0.656	1.00	1.00	23.6	23.6	23.6	23.6	1.00	1.00	1.00	1.00	

	Table 11 - Design Parameters Comparison												
NT	c, :	in.	ε _t =	$= \varepsilon_s$	(þ	φP _n ,	kip	φM _n , kip.ft				
INO.	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>	Hand	<u>spColumn</u>			
1	11.07	11.07	0.00120	0.00120	0.65	0.65	400.4	400.4	176.5	176.5			
2	11.63	11.63	0.00100	0.00100	0.65	0.65	426.4	426.4	172.7	172.7			
3	10.72	10.72	0.00134	0.00134	0.65	0.65	383.6	383.6	178.6	178.6			
4	10.32	10.32	0.00150	0.00150	0.65	0.65	366.5	366.5	180.8	180.8			
5	10.02	10.02	0.00164	0.00164	0.65	0.65	351.8	351.8	182.3	182.3			
6	10.68	10.68	0.00135	0.00135	0.65	0.65	381.8	381.8	178.8	178.8			
7	10.26	10.26	0.00153	0.00153	0.65	0.65	363.4	363.4	181.1	181.1			
8	7.24	7.24	0.00342	0.00342	0.76	0.76	266.6	266.6	203.7	203.7			
9	6.64	6.64	0.00401	0.00401	0.81	0.81	248.2	248.2	208.6	208.6			

All the results of the hand calculations illustrated above are in precise agreement with the automated exact results obtained from the <u>spColumn</u> program.

CONCRETE SOFTWARE SOLUTIONS

9. Conclusions & Observations

The analysis of the reinforced concrete section performed by <u>spColumn</u> conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility and includes slenderness effects using moment magnification method for sway and nonsway frames.

ACI 318 provides multiple options for calculating values of k, $(EI)_{eff}$, δ_s , and δ leading to variability in the determination of the adequacy of a column section. Engineers must exercise judgment in selecting suitable options to match their design condition as is the case in the reference where the author conservatively made assumptions to simplify and speed the calculation effort. The <u>spColumn</u> program utilizes the exact methods whenever possible and allows user to override the calculated values with direct input based on their engineering judgment wherever it is permissible.