

Moment Strength of Flanged Reinforced Concrete Beam (ACI 318-14)

Moment Strength of Flanged Reinforced Concrete Beam (ACI 318-14)

Determining the flexural design strength of the isolated T-section shown in Figure 1 in accordance with the ACI 318-14 code. Tension reinforcement is 9-#11 with three bars in each of the three layers which are spaced one-inch clear space. The T-section is also reinforced with #4 stirrups. Concrete compressive strength f_c is 4,000 psi and reinforcement yield strength f_y is 60,000 psi. Compare the calculated values in the Reference and the hand calculations with values obtained by <u>spBeam</u> engineering software program from <u>StructurePoint</u>. (The shear design is outside the scope of this case study and not included in neither the hand calculations nor the software results).

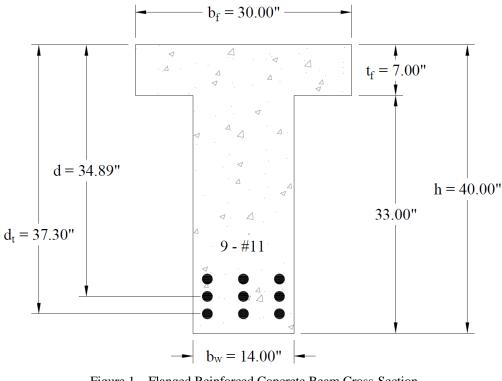


Figure 1 - Flanged Reinforced Concrete Beam Cross-Section

CONCRETE SOFTWARE SOLUTIONS

Contents

1.	Effective Flange Width	1
2.	Flanged Section Analysis	2
3.	Nominal Flexural Strength	2
4.	Design Flexural Strength	3
5.	Moment Strength of Flanged Reinforced Concrete Beam – spBeam Software	4
6.	Comparison of Analysis Results	.13

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

- Reinforced Concrete Design, 8th Edition, 2017, Chu-Kia Wang, Charles G. Salmon, Jose A. Pincheira, Gustavo J. Parra-Montesinos, Oxford University Press, Example 4.4.3.
- [2] spBeam Engineering Software Program Manual v5.50, StructurePoint LLC., 2018.

Design Data

- $f_c = 4,000$ psi normal weight concrete
- $f_y = 60,000 \text{ psi}$

Beam overall height, h = 40 in. (Including flange thickness)

Flange thickness, $t_f = 7$ in.

Flange width, $b_f = 30$ in.

Clear cover = 1.5 in.

Tension reinforcement (9-#11), $A_s = 9 \times 1.56 \text{ in.}^2 = 14.04 \text{ in.}^2$

Solution

1. Effective Flange Width

Determining the effective flange width following ACI 318-14 (6.3.2.2), the effective flange width b_f will be:

$b_f \leq 4b_w$	<u>ACI 318-14 (6.3.2.2)</u>
$b_f = 30 \text{ in.} \le 4b_w = 4 \times 14 \text{ in.} = 56 \text{ in.}$	
$t_f \ge 0.5 b_w$	<u>ACI 318-14 (6.3.2.2)</u>
$t_f = 7 \text{ in.} \le 0.5 b_w = 0.5 \times 14 \text{ in.} = 7 \text{ in.}$	

Therefore, flange width and flange thickness are satisfactory to ACI 318-14 (6.3.2.2).

Structure Point

CONCRETE SOFTWARE SOLUTIONS

2. Flanged Section Analysis

Determining the effective depth and calculating the stress block depth, assuming rectangular section behavior.

For a clear cover of 1.5 in. and #4 stirrups:

 $d = h - \text{clear cover} - \text{stirrup diameter} - 1.5 \times \text{bar diameters} - \text{spacing between layers}$

d = 40 in. -1.5 in. -0.5 in. -1.5×1.41 in. -1 in. = 34.89 in.

The depth of the compressive stress block is:

$$a = \frac{A_{s}f_{y}}{0.85f_{c}b_{f}} = \frac{14.04 \text{ in.}^{2} \times 60 \text{ ksi}}{0.85 \times 4 \text{ ksi} \times 30 \text{ in.}} = 8.26 \text{ in.} > t_{f} = 7 \text{ in.}$$

Since the depth of the equivalent block "*a*" exceeds the thickness of the flange, assumption of rectangular section behavior is not correct. Therefore, section behaves like a T-section and the neutral axis is in the web. The internal forces are:

3. Nominal Flexural Strength

The section will be treated as a T-section by the two-coupled method illustrated in Figure 2.

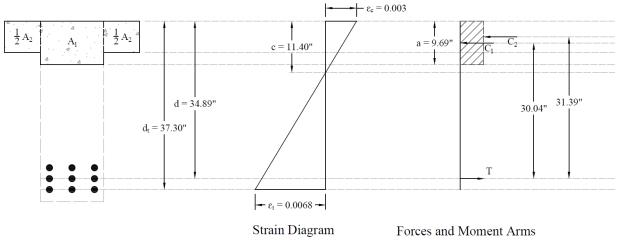


Figure 2 - Strain diagram and internal forces

The internal forces are:

 $T = A_s f_v = 14.04 \text{ in.}^2 \times 60 \text{ ksi} = 842.40 \text{ kips}$

$$C_1 = 0.85 f_c b_w a = 0.85 \times 4 \text{ ksi} \times 14 \text{ in.} \times a = 47.6 \frac{\text{kips}}{\text{in.}} \times a$$

$$C_2 = 0.85 f_c^{\prime} (b_f - b_w) t_f = 0.85 \times 4 \text{ ksi} \times (30 \text{ in.} - 14 \text{ in.}) \times 7 \text{ in.} = 380.8 \text{ kips}$$

ACI 318-14 (Table 22.2.2.4.3)

From equilibrium T = C,

$$C = 47.6 \frac{\text{kips}}{\text{in.}} \times a + 380.8 \text{ kips} = 842.40 \text{ kips}$$
$$a = \frac{842.40 \text{ kips} - 380.8 \text{ kips}}{47.6 \text{ kips}} = 9.69 \text{ in.} > t_f$$

$$=\frac{47.6 \text{ kips/in.}}{47.6 \text{ kips/in.}}=9.69 \text{ in.}$$

Since $f_c = 4,000$ psi:

$$\beta_1 = 0.85$$

 $c = \frac{a}{\beta_1} = \frac{9.69 \text{ in.}}{0.85} = 11.40 \text{ in.}$

Computing the nominal moment strength, using the two-couple method.

$$M_n = C_1 \left(d - \frac{a}{2} \right) + C_2 \left(d - \frac{t_f}{2} \right)$$

$$M_n = 47.6 \text{ kips/in.} \times 9.69 \text{ in.} \times \left(34.89 \text{ in.} - \frac{9.69 \text{ in.}}{2}\right) \times \frac{1 \text{ ft}}{12 \text{ in.}} + 380.8 \text{ kips} \times (34.89 \text{ in.} - 3.5 \text{ in.}) \times \frac{1 \text{ ft}}{12 \text{ in.}}$$

 $M_n = 1155 + 996 = 2151$ ft-kips

4. Design Flexural Strength

In order to calculate the net tensile strain ε_t at the extreme tension steel, the distance d_t to the extreme tension steel is:

$$d_{t} = d + \frac{1.41 \text{ in.}}{2} + 1 \text{ in.} + \frac{1.41 \text{ in.}}{2} = 34.89 \text{ in.} + 2.41 \text{ in.} = 37.3 \text{ in.}$$
$$\varepsilon_{t} = 0.003 \frac{d_{t} - c}{c} = 0.003 \times \frac{37.3 \text{ in.} - 11.40 \text{ in.}}{11.40 \text{ in.}} = 0.0068 > 0005$$

Therefore: $\phi = 0.90$ (function of the extreme-tension layer of bars strain)

ACI 318-14 (21.2.1)

Thus,

 $\phi M_n = 0.90 \times 2151$ ft-kips = 1935.9 ft-kips

Structure Point

CONCRETE SOFTWARE SOLUTIONS

5. Moment Strength of Flanged Reinforced Concrete Beam – spBeam Software

<u>spBeam</u> is widely used for analysis, design and investigation of beams, and one-way slab systems (including standard and wide module joist systems) per latest American (ACI 318) and Canadian (CSA A23.3) codes. <u>spBeam</u> can be used for new designs or investigation of existing structural members subjected to flexure, shear, and torsion loads. With capacity to integrate up to 20 spans and two cantilevers of wide variety of floor system types, <u>spBeam</u> is equipped to provide cost-effective, accurate, and fast solutions to engineering challenges.

<u>spBeam</u> provides top and bottom bar details including development lengths and material quantities, as well as live load patterning and immediate and long-term deflection results. Using the moment redistribution feature engineers can deliver safe designs with savings in materials and labor. Engaging this feature allows up to 20% reduction of negative moments over supports reducing reinforcement congestions in these areas.

Beam analysis and design requires engineering judgment in most situations to properly simulate the behavior of the targeted beam and take into account important design considerations such as: designing the beam as rectangular or T-shaped sections; using the effective flange width or the center-to-center distance between the beam and the adjacent beams. Regardless which of these options is selected, <u>spBeam</u> provide users with options and flexibility to:

- 1. Design the beam as a rectangular cross-section or a T-shaped section.
- 2. Use the effective or full beam flange width.
- 3. Include the flanges effects in the deflection calculations.
- 4. Invoke moment redistribution to lower negative moments
- 5. Using gross (uncracked) or effective (cracked) moment of inertia
- 6. Design the beam as singly or doubly reinforced section.

For illustration and comparison purposes, the following figures provide a sample of the results obtained from an <u>spBeam</u> model created for the beam covered in this design example.

spBeam v5.50 A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams and One-way Slab Systems Copyright - 1988-2021, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spBeam computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spBeam program. Although STRUCTUREPOINT has endeavored to produce spBeam error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spBeam program.Licensed to: STRUCTUREPOINT.

STRUCTUREPOINT - spBeam v5.50	Page 2
Licensed to: STRUCTUREPOINT C:\ACI 318 Examples\Strength of Fla\Strength of T Section (Investigation) 4.4.3 - ACI318 -14.slb	10/2/2021 1:01 PM
Contents	
1. Input Echo	3
1.1. General Information	
1.2. Solve Options	
1.3. Material Properties	
1.3.1. Concrete: Slabs / Beams	
1.3.2. Concrete: Columns	
1.3.3. Reinforcing Steel	
1.4. Reinforcement Database	
1.5. Span Data	
1.5.1. Slabs	
1.5.2. Ribs and Longitudinal Beams	
1.6. Support Data 1.6.1. Columns	
1.6.2. Boundary Conditions	
1.7. Load Data	
1.7.1. Load Cases and Combinations	
1.7.2. Line Loads	
1.8. Reinforcement Criteria	
1.8.1. Slabs and Ribs	
1.8.2. Beams	
1.9. Reinforcing Bars	
1.9.1. Top Bars	
1.9.2. Bottom Bars	
1.9.3. Transverse Reinforcement	
2. Design Results.	
2.1. Flexural Capacity	
3. Diagrams	
3.1. Loads	
3.2. Moment Capacity	7
3.3. Reinforcement	

STRUCTUREPOINT - spBeam v5.50 Licensed to: STRUCTUREPOINT C:\ACI 318 Examples\Strength of Fla...\Strength of T Section (Investigation) 4.4.3 - ACI318 -14.slb

Page | **3** 10/2/2021 1:01 PM

1. Input Echo

1.1. General Information

File Name	\Strength of T Section (Investigation) 4.4				
Project	Strength of T Section (Investigation) 4.4.3 - ACI318 -14				
Frame	Example 4.4.3				
Engineer	SP				
Code	ACI 318-14				
Reinforcement Database	ASTM A615				
Mode	Investigation				
Number of supports =	2				
Floor System	One-Way/Beam				

1.2. Solve Options

Live load pattern ratio = 0%	
Deflections are based on gross section properties.	
Long-term deflections are NOT calculated.	
Compression reinforcement calculations selected.	
Default incremental rebar design selected.	
Moment redistribution NOT selected.	
Effective flange width calculations selected.	
Rigid beam-column joint NOT selected.	
Torsion analysis and design NOT selected.	

1.3. Material Properties

1.3.1. Concrete: Slabs / Beams

W _G	150 lb/i
f' _c	4 ksi
E₀	3834.3 ksi
f,	0.47434 ksi

1.3.2. Concrete: Columns

Wc	150 I	b/ft ³
f'c	4 1	ksi
Ec	3834.3	csi
f,	0.47434	ksi

1.3.3. Reinforcing Steel

fy	60 ks
f _{yt}	60 ks
Es	29000 ks
Epoxy coated bars	No

1.4. Reinforcement Database

Size	Db	Ab	Wb	Size	Db	Ab	Wb
	in	in ²	lb/ft		in	in ²	lb/ft
#3	0.38	0.11	0.38	#4	0.50	0.20	0.67

7.65

2.25

ICTUREPOINT - spBeam v5.50 sed to: STRUCTUREPOINT I 318 Examples\Strength of Fla\Strength of T Section (Investigation) 4.4.3 - ACI318 -14.slb							Page 4 10/2/2021 1:01 PM	
Size	Db	Ab	Wb	Size	Db	Ab	Wb	
	in	in ²	lb/ft		in	in ²	lb/ft	
#5	0.63	0.31	1.04	#6	0.75	0.44	1.50	
#7	0.88	0.60	2.04	#8	1.00	0.79	2.67	
#9	1.13	1.00	3.40	#10	1.27	1.27	4.30	

5.31

13.60

#14

1.69

#18 1.5. Span Data

#11

1.5.1. Slabs

Span	Loc	L1	t	wL	wR	bE _{ff}	H _{min}
		ft	in	ft	ft	in	in
1	Int	24.000	7.00	1.250	1.250	30.00	0.00

1.5.2. Ribs and Longitudinal Beams

1.41

2.26

Span		Ribs		Beams		Span
	b	h	Sp	b	h	H _{min}
	in	in	in	in	in	in
1	0.00	0.00	0.00	14.00	40.00	18.00

1.56

4.00

1.6. Support Data

1.6.1. Columns

Support	c1a	c2a	Ha	c1b	c2b	Hb	Red %
	in	in	ft	in	in	ft	
1	28.00	28.00	0.000	28.00	28.00	0.000	100
2	28.00	28.00	0.000	28.00	28.00	0.000	100

1.6.2. Boundary Conditions

Support	Sprin	Ig	Far End		
	K z kip/in	K _{ry} kip-in/rad	Above	Below	
1	0	0	Pinned	Pinned	
2	0	0	Pinned	Pinned	

1.7. Load Data

1.7.1. Load Cases and Combinations

	Case	Dead	Live	
	Туре	DEAD	LIVE	
-	U1	1.200	1.600	

1.7.2. Line Loads

Case/Pat	tt Span	Wa	La	Wb	Lb
		lb/ft	ft	lb/ft	ft
Live	1	16800.00	0.000	16800.00	24.000

1.8. Reinforcement Criteria

1.8.1. Slabs and Ribs

ĵ.	Units	Top Ba	ars	Bottom Bars	
		Min.	Max.	Min.	Max
Bar Size		#3	#4	#3	#4

STRUCTUREPOINT - spBeam v5.50 Licensed to: STRUCTUREPOINT C:\ACI 318 Examples\Strength of Fla...\Strength of T Section (Investigation) 4.4.3 - ACI318 -14.slb Page | **5** 10/2/2021 1:01 PM

Î	Units	Top B	ars	Bottom Bars		
		Min.	Max.	Min.	Max.	
Bar spacing	in	1.00	18.00	1.00	18.00	
Reinf ratio	%	0.14	5.00	0.14	5.00	
Clear Cover	in	3.00		3.00		

There is NOT more than 12 in of concrete below top bars.

1.8.2. Beams

	Units	Units Top Ba		Bottom	Bars	Stirru	ps
		Min.	Max.	Min.	Max.	Min.	Max.
Bar Size		#3	#3	#4	#4	#3	#4
Bar spacing	in	1.00	18.00	1.00	18.00	6.00	18.00
Reinf ratio	%	0.14	5.00	0.14	5.00		
Clear Cover	in	3.00	100000	3.00	CARK 0.25C.04		
Layer dist.	in	1.00		1.00			
No. of legs						2	6
Side cover	in					1.50	
1st Stirrup	in					3.00	

There is NOT more than 12 in of concrete below top bars.

1.9. Reinforcing Bars

1.9.1. Top Bars

Top Bars: --- NONE ----

1.9.2. Bottom Bars

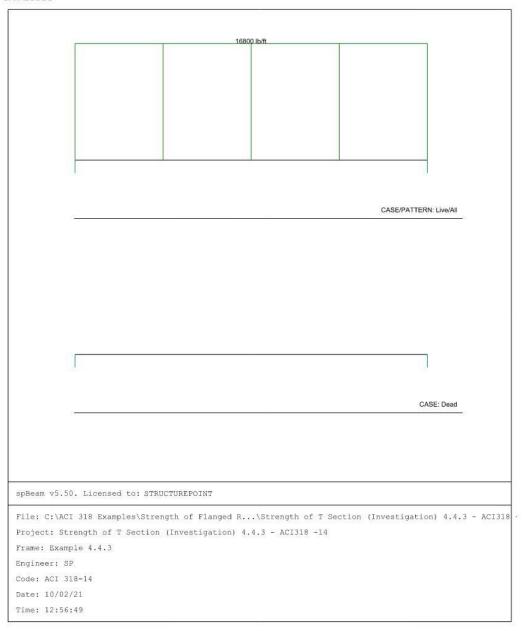
Span	Conti	nuous	Discontinuous				
	Bars	Cover	Bars	Length	Start	Cover	
		in		ft	ft	in	
1	3-#11	2.00					
	3-#11	4.41					
	3-#11	6.82					

1.9.3. Transverse Reinforcement

Span	Stirrups (2 legs each unless otherwise noted)	
1	65-#4 [3L] @ 4.0	2

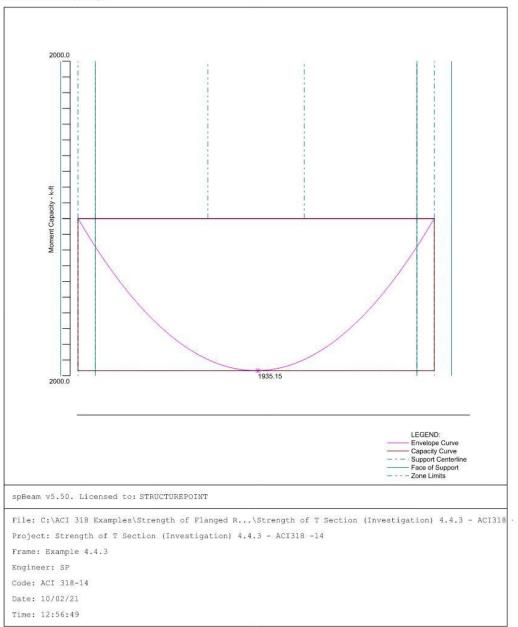
2. Design Results

2.1. Flexural Capacity


		Тор						Bottom			
Span	x	A _{s,top}	ФМ"-	M _u -	Comb Pat	Status	A _{s,bot}	ФМ _n +	M _u +	Comb Pat	Status
	ft	in ²	k-ft	k-ft			in ²	k-ft	k-ft		
1	0.000	0.00	0.00	0.00	U1 All		14.04	1936.21	0.00	U1 All	
	1.167	0.00	0.00	0.00	U1 All	ОК	14.04	1936.21	358.03	U1 All	OK
	8.750	0.00	0.00	0.00	U1 All	ОК	14.04	1936.21	1793.19	U1 All	OK
	12.000	0.00	0.00	0.00	U1 All	ОК	14.04	1936.21	1935.15	U1 All	OK
	12.125	0.00	0.00	0.00	U1 All	ОК	14.04	1936.21	1935.15	U1 All	OK
	15.250	0.00	0.00	0.00	U1 All	OK	14.04	1936.21	1793.20	U1 All	OK
	22.833	0.00	0.00	0.00	U1 All	ОК	14.04	1936.21	358.04	U1 All	OK
	24.000	0.00	0.00	0.00	U1 All		14.04	1936.21	0.00	U1 All	

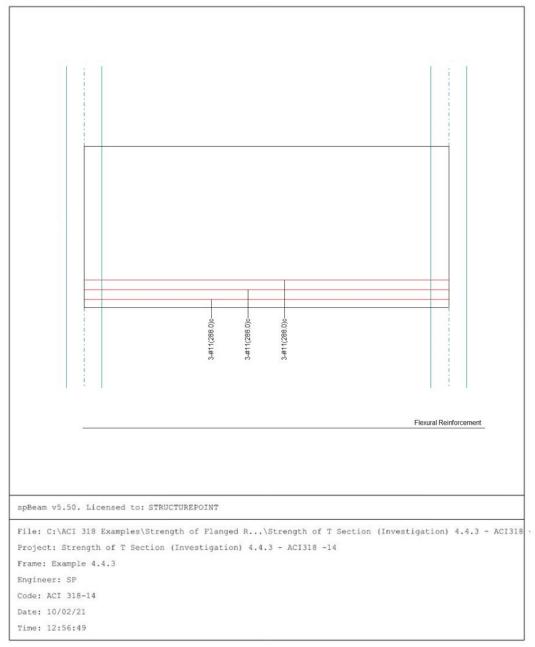
STRUCTUREPOINT - spBeam v5.50	Page 6
Licensed to: STRUCTUREPOINT	10/2/2021
C:VACI 318 Examples/Strength of FIa/Strength of T Section (Investigation) 4.4.3 - ACI318 -14.slb	1:01 PM

3. Diagrams 3.1. Loads



STRUCTUREPOINT - spBeam v5.50 Licensed to: STRUCTUREPOINT C:\ACI 318 Examples\Strength of Fla...\Strength of T Section (Investigation) 4.4.3 - ACI318 -14.slb Page | **7** 10/2/2021 1:01 PM

3.2. Moment Capacity



STRUCTUREPOINT - spBeam v5.50 Licensed to: STRUCTUREPOINT C:ACI 318 Examples\Strength of Fla...\Strength of T Section (Investigation) 4.4.3 - ACI318 -14.slb

Page | 8 10/2/2021 1:01 PM

3.3. Reinforcement

6. Comparison of Analysis Results

	Table 1 - Comparison of Results									
Method	Reinforcement	$\mathbf{A}_{ ext{s,provided,}}$	b _f ,	φ M n,						
Methou	Kennortennent	in. ²	in.	kip-ft						
Reference	9 - #11	14.04	30	1937.00						
Hand	9 - #11	14.04	30	1935.90						
<u>spBeam</u>	9 - #11	14.04	30	1936.21						

In all of the hand calculations and the reference used illustrated above, the results are in precise agreement with the automated exact results obtained from the <u>spBeam</u> program.