

Moment Strength of Flanged Reinforced Concrete Beam (ACI 318-14)

Version: October-05-2021

Moment Strength of Flanged Reinforced Concrete Beam (ACI 318-14)

Determining the flexural design strength of the isolated T-section shown in Figure 1 in accordance with the ACI 318-14 code. Tension reinforcement is 9-#11 with three bars in each of the three layers which are spaced one-inch clear space. The T-section is also reinforced with 5-#8 bars as compression reinforcement and #4 stirrups. Concrete compressive strength f_c is 4,000 psi and reinforcement yield strength f_y is 60,000 psi. Compare the calculated values in the Reference and the hand calculations with values obtained by spBeam engineering software program from StructurePoint.

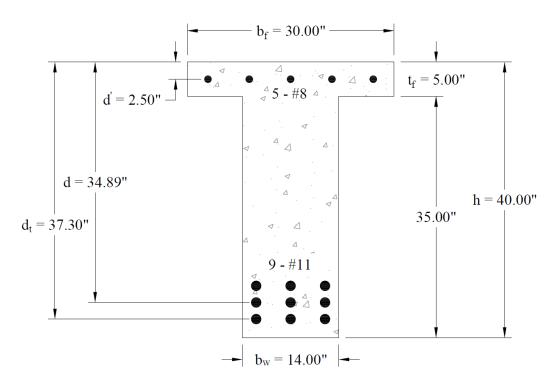


Figure 1 – Flanged Reinforced Concrete Beam Cross-Section

Version: October-05-2021

Contents

1.	Effective Flange Width	.1
	Flanged Section Analysis	
	Nominal Flexural Strength	
	Design Flexural Strength	
	Moment Strength of Flanged Reinforced Concrete Beam – spBeamSoftware	
6	Comparison of Design Results	14

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

- Reinforced Concrete Design, 8th Edition, 2017, Chu-Kia Wang, Charles G. Salmon, Jose A. Pincheira, Gustavo J. Parra-Montesinos, Oxford University Press, Example 4.4.5.
- [2] spBeam Engineering Software Program Manual v5.50, StructurePoint LLC., 2018.

Design Data

 f_c '= 4,000 psi normal weight concrete

 $f_y = 60,000 \text{ psi}$

Beam overall height, h = 40 in. (Including flange thickness)

Flange thickness, $t_f = 5$ in.

Flange width, $b_f = 30$ in.

Clear cover = 1.5 in. (For tension reinforcement)

Tension reinforcement (9-#11), $A_s = 9 \times 1.56$ in.² = 14.04 in.²

Compression reinforcement (5-#8), $A_s = 5 \times 0.79$ in.² = 3.95 in.², centroid of compression reinforcement is located 2.5 in. from top of the flange.

Solution

1. Effective Flange Width

Determining the effective flange width following ACI 318-14 (6.3.2.2), the effective flange width b_f will be:

$$b_f \le 4b_w$$
 ACI 318-14 (6.3.2.2)

 $b_f = 30 \text{ in.} \le 4b_w = 4 \times 14 \text{ in.} = 56 \text{ in.}$

$$t_f \ge 0.5b_w$$
 ACI 318-14 (6.3.2.2)

$$t_f = 5 \text{ in.} \le 0.5 b_w = 0.5 \times 14 \text{ in.} = 7 \text{ in.}$$

Therefore, flange width and flange thickness are satisfactory to ACI 318-14 (6.3.2.2).

2. Flanged Section Analysis

Determining the effective depth and calculating the stress block depth, assuming rectangular section behavior.

For a clear cover of 1.5 in. and #4 stirrups:

d = h - clear cover – stirrup diameter – 1.5×bar diameters – spacing between layers

$$d = 40 \text{ in.} -1.5 \text{ in.} -0.5 \text{ in.} -1.5 \times 1.41 \text{ in.} -1 \text{ in.} = 34.89 \text{ in.}$$

Rectangular section behavior is assumed where the stress block depth "a" is less than the flange thickness (a<t_f) and yielding of the reinforcement is expected.

$$a = \frac{A_s \times f_y - A_s \times (f_y - 0.85 \times f_c)}{0.85 \times f_c \times b_f}$$

$$a = \frac{14.04 \text{ in.}^2 \times 60 \text{ ksi} - 3.95 \text{ in.}^2 \times (60 \text{ ksi} - 0.85 \times 4 \text{ ksi})}{0.85 \times 4 \text{ ksi} \times 30 \text{ in.}} = 6.07 \text{ in.} > t_f = 5 \text{ in.}$$

Depth of the equivalent block exceeds the flange depth (i.e., T-section behavior). The internal forces, assuming yielding of compression steel, are:

$$T = A_s \times f_v = 14.04 \text{ in.}^2 \times 60 \text{ ksi} = 842.40 \text{ kips}$$

$$C_1 = 0.85 f_c^{'} b_w a = 0.85 \times 4 \text{ ksi} \times 14 \text{ in.} \times a = 47.6 \frac{\text{kips}}{\text{in}} \times a$$

$$C_2 = 0.85 \times f_c \times (b_f - b_w) \times t_f = 0.85 \times 4 \text{ ksi} \times 16 \text{ in.} \times 5 \text{ in.} = 272 \text{ kips}$$

$$C_s = A_s' \times (f_v - 0.85 \times f_c') = 3.95 \text{ in.}^2 \times (60 \text{ ksi} - 0.85 \times 4 \text{ ksi}) = 224 \text{ kips}$$

From equilibrium T = C,

$$C = C_1 + C_2 + C_s = T$$

$$a = \frac{842.4 \text{ kips} - 272 \text{ kips} - 224 \text{ kips}}{47.6 \text{ kips/in.}} = 7.27 \text{ in.}$$

$$C_1 = 0.85 \times f_c \times b_w \times a = 0.85 \times 4 \text{ ksi} \times 14 \text{ in.} \times 7.27 \text{ in.} = 346.05 \text{ kips}$$

Where:

$$\beta_1 = 0.85$$

ACI 318-14 (Table 22.2.2.4.3)

$$c = \frac{a}{\beta_1} = \frac{7.27 \text{ in.}}{0.85} = 8.55 \text{ in.}$$

Verifying that the compression steel reinforcement yields as assumed.

$$\varepsilon_s' = 0.003 \times \frac{c - d'}{c} = 0.003 \times \frac{8.55 \text{ in.} - 2.5 \text{ in.}}{8.55 \text{ in.}} = 0.00212 > \varepsilon_y = 0.00207$$

Therefore, compression reinforcement yields as assumed.

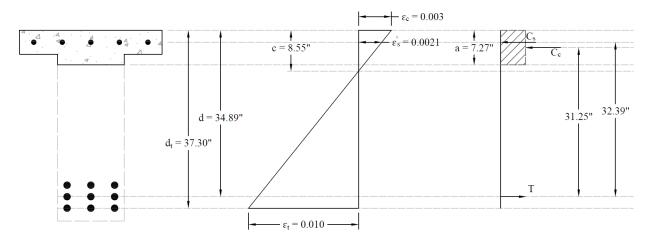
3. Nominal Flexural Strength

The section will be treated as a T-section by the two-coupled method illustrated in Figure 2. The nominal moment strength M_n can be determined by taking moments with respect to the centroid of the tension steel.

$$M_n = C_1 \times \left(d - \frac{a}{2}\right) + C_2 \times \left(d - \frac{t_f}{2}\right) + C_s \times \left(d - d'\right)$$

$$M_{n} = \begin{bmatrix} 346.05 \text{ kips} \times \left(34.89 \text{ in.} - \frac{7.27 \text{ in.}}{2}\right) + 272 \text{ kips} \times \left(34.89 \text{ in.} - \frac{5 \text{ in.}}{2}\right) \\ + 224 \text{ kips} \times \left(34.89 \text{ in.} - 2.5 \text{ in.}\right) \end{bmatrix} \times \frac{1 \text{ ft}}{12 \text{ in.}}$$

$$M_n = 901.32 + 734.17 + 604.61 = 2240.1$$
 ft-kips


4. Design Flexural Strength

In order to calculate the net tensile strain ε_t at the extreme tension steel, the distance d_t to the extreme tension steel is:

$$d_t = d + \frac{1.41 \text{ in.}}{2} + 1 \text{ in.} + \frac{1.41 \text{ in.}}{2} = 34.89 \text{ in.} + 2.41 \text{ in.} = 37.3 \text{ in.}$$

$$\varepsilon_t = 0.003 \times \frac{d_t - c}{c} = 0.003 \times \frac{37.3 \text{ in.} - 8.55 \text{ in.}}{8.55 \text{ in.}} = 0.01 > 0.005$$

Computing the net tensile strain ε_t at the extreme tension steel. Strain of reinforcement at level d_t is illustrated in Figure 2.

Strain Diagram

Forces and Moment Arms

Figure 2 – Strain diagram and internal forces

$$\varepsilon_t = 0.003 \times \frac{d_t - c}{c} = 0.003 \times \frac{37.3 \text{ in.} - 8.58 \text{ in.}}{8.58 \text{ in.}} = 0.010 > 0.005$$

thus, $\phi = 0.9$ and,

$$\phi M_n = 0.9 \times 2240.1 \text{ ft-kips} = 2016.1 \text{ ft-kips}$$

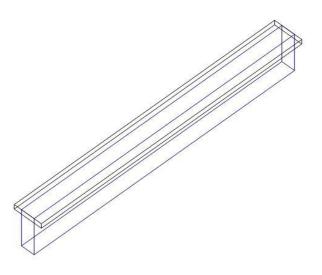
5. Moment Strength of Flanged Reinforced Concrete Beam – spBeamSoftware

spBeam is widely used for analysis, design and investigation of beams, and one-way slab systems (including standard and wide module joist systems) per latest American (ACI 318) and Canadian (CSA A23.3) codes. spBeam can be used for new designs or investigation of existing structural members subjected to flexure, shear, and torsion loads. With capacity to integrate up to 20 spans and two cantilevers of wide variety of floor system types, spBeam is equipped to provide cost-effective, accurate, and fast solutions to engineering challenges.

spBeam provides top and bottom bar details including development lengths and material quantities, as well as live load patterning and immediate and long-term deflection results. Using the moment redistribution feature engineers can deliver safe designs with savings in materials and labor. Engaging this feature allows up to 20% reduction of negative moments over supports reducing reinforcement congestions in these areas.

Beam analysis and design requires engineering judgment in most situations to properly simulate the behavior of the targeted beam and take into account important design considerations such as: designing the beam as rectangular or T-shaped sections; using the effective flange width or the center-to-center distance between the beam and the adjacent beams. Regardless which of these options is selected, spBeam provide users with options and flexibility to:

- 1. Design the beam as a rectangular cross-section or a T-shaped section.
- 2. Use the effective or full beam flange width.
- 3. Include the flanges effects in the deflection calculations.
- 4. Invoke moment redistribution to lower negative moments
- 5. Using gross (uncracked) or effective (cracked) moment of inertia
- 6. Design the beam as singly or doubly reinforced section.


For illustration and comparison purposes, the following figures provide a sample of the results obtained from an spBeam model created for the beam covered in this design example.

spBeam v5.50
A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams and One-way Slab Systems Copyright - 1988-2021, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spBeam computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spBeam program. Although STRUCTUREPOINT has endeavored to produce spBeam error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spBeam program. Licensed to: STRUCTUREPOINT

Page | 2 10/2/2021 1:23 PM

Contents

1.	Input Echo.	3
	1.1. General Information	3
	1.2. Solve Options	
	1.3. Material Properties	3
	1.3.1. Concrete: Slabs / Beams	
	1.3.2. Concrete: Columns	3
	1.3.3. Reinforcing Steel	3
	1.4. Reinforcement Database	3
	1.5. Span Data	4
	1.5.1. Slabs	4
	1.5.2. Ribs and Longitudinal Beams	4
	1.6. Support Data	
	1.6.1. Columns	4
	1.6.2. Boundary Conditions	4
	1.7. Load Data	
	1.7.1. Load Cases and Combinations	4
	1.7.2. Line Loads	
	1.8. Reinforcement Criteria	4
	1.8.1. Slabs and Ribs	4
	1.8.2. Beams	5
	1.9. Reinforcing Bars	5
	1.9.1. Top Bars	5
	1.9.2. Bottom Bars	
	1.9.3. Transverse Reinforcement	5
2.	Design Results	
	2.1. Flexural Capacity	5
3.	Diagrams	7
	3.1. Loads	7
	3.2. Moment Capacity	8
	3.3 Reinforcement	9

Page | 3 10/2/2021 1:23 PM

1. Input Echo

1.1. General Information

File Name	\Strength of T Section (Investigation) 4.4
Project	Strength of T Section (Investigation) 4.4.4 - ACI318 -14
Frame	Example 4.4.4
Engineer	SP
Code	ACI 318-14
Reinforcement Database	ASTM A615
Mode	Investigation
Number of supports =	2
Floor System	One-Way/Beam

1.2. Solve Options

Live load pattern ratio = 0%	
Deflections are based on gross section properties.	
Long-term deflections are NOT calculated.	
Compression reinforcement calculations selected.	
Default incremental rebar design selected.	
Moment redistribution NOT selected.	
Effective flange width calculations selected.	
Rigid beam-column joint NOT selected.	
Torsion analysis and design NOT selected.	

1.3. Material Properties

1.3.1. Concrete: Slabs / Beams

W _G	150 lb/ft
r _c	4 ksi
E _c	3834.3 ksi
f _r	0.47434 ksi

1.3.2. Concrete: Columns

W _c	150	lb/ft3
P _c	4	ksi
E _c	3834.3	ksi
f,	0.47434	ksi

1.3.3. Reinforcing Steel

f _y	60	ksi
f _{yt}	60	ksi
E _s	29000	ksi
Epoxy coated bars	No	

1.4. Reinforcement Database

Size	Db	Ab	Wb	Size	Db	Ab	Wb
	in	in ²	lb/ft		in	in ²	lb/ft
#3	0.38	0.11	0.38	#4	0.50	0.20	0.67

Page | 4 10/2/2021 1:23 PM

Size	Db	Ab	Wb	Size	Db	Ab	Wb
	in	in ²	lb/ft		in	in²	lb/ft
#5	0.63	0.31	1.04	#6	0.75	0.44	1.50
#7	0.88	0.60	2.04	#8	1.00	0.79	2.67
#9	1.13	1.00	3.40	#10	1.27	1.27	4.30
#11	1.41	1.56	5.31	#14	1.69	2.25	7.65
#18	2.26	4.00	13.60				

1.5. Span Data

1.5.1. Slabs

Span Loc	L1	t	wL	wR	bE _{ff}	H _{min}
	ft	in	ft	ft	in	in
1 Int	24.000	5.00	1.250	1.250	30.00	0.00

1.5.2. Ribs and Longitudinal Beams

Span		Ribs		Beams		Span
	b	h	Sp	b	h	H _{min}
	in	in	in	in	in	in
1	0.00	0.00	0.00	14.00	40.00	18.00

1.6. Support Data

1.6.1. Columns

Support	c1a	c2a	Ha	c1b	c2b	Hb	Red %
	in	in	ft	in	in	ft	
1	28.00	28.00	0.000	28.00	28.00	0.000	100
2	28.00	28.00	0.000	28.00	28.00	0.000	100

1.6.2. Boundary Conditions

Support	Sprin	ng	Far End	
	K _z	K _{ry}	Above	Below
	kip/in	kip-in/rad		
1	0	0	Pinned	Pinned
2	0	0	Pinned	Pinned

1.7. Load Data

1.7.1. Load Cases and Combinations

Case	Dead	Live
Type	DEAD	LIVE
U1	1.200	1.600

1.7.2. Line Loads

Case/Pat	t Span	Wa	La	Wb	Lb
	lb/ft ft		ft	lb/ft	ft
Live	1	17500.00	0.000	17500.00	24.000

1.8. Reinforcement Criteria

1.8.1. Slabs and Ribs

	Units	Top Ba	ars	Bottom	Bars
		Min.	Max.	Min.	Max.
Bar Size		#3	#4	#3	#4

Page | 5 10/2/2021 1:23 PM

	Units	Units Top Bars			Bottom Bars		
		Min.	Max.	Min.	Max.		
Bar spacing	in	1.00	18.00	1.00	18.00		
Reinf ratio	%	0.14	5.00	0.14	5.00		
Clear Cover	in	3.00		3.00			

There is NOT more than 12 in of concrete below top bars.

1.8.2. Beams

	Units	Units Top Bars		Bottom	Bars	Stirrups		
		Min.	Max.	Min.	Max.	Min.	Max.	
Bar Size		#3	#3	#4	#4	#4	#4	
Bar spacing	in	1.00	18.00	1.00	18.00	3.00	18.00	
Reinf ratio	%	0.14	5.00	0.14	5.00			
Clear Cover	in	3.00		3.00	0.000 0.000 0.000			
Layer dist.	in	1.00		1.00				
No. of legs						2	2	
Side cover	in					1.50		
1st Stirrup	in					3.00		

There is NOT more than 12 in of concrete below top bars.

1.9. Reinforcing Bars

1.9.1. Top Bars

Span		Left		Cont	inuous		Right	
	Bars	Length	Cover	Bars	Cover	Bars	Length	Cover
	0000000	ft	in	11000000	in	a constituent	ft	in
1				5-#8	2.00			

1.9.2. Bottom Bars

Span	Conti	nuous	Discontinuous				
	Bars	Cover	Bars	Length	Start	Cover	
	in		24,000,000	ft	ft	in	
1	3-#11	2.00					
	3-#11	4.41					
	3-#11	6.82					

1.9.3. Transverse Reinforcement

Span	Stirrups (2 legs each unless otherwise noted)	
1	65-#4 [3L] @ 4.0	

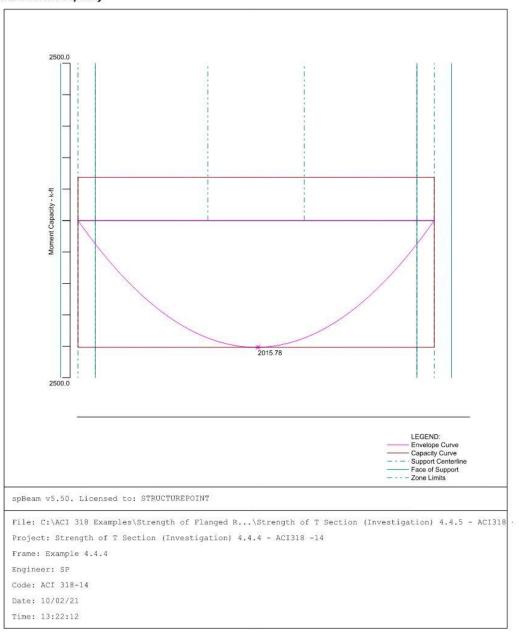
2. Design Results

2.1. Flexural Capacity

			To	р		1	Bottom				
Span	x ft	A _{s,top} in ²	ФМ _n - k-ft	M _u - k-ft	Comb Pat	Status	A _{s,bot} in ²	ФМ _n + k-ft	M _u + k-ft	Comb Pat	Status
1	0.000	3.95	-685.90	0.00	U1 All		14.04	2016.35	0.00	U1 All	
	1.167	3.95	-685.90	0.00	U1 All	OK	14.04	2016.35	372.95	U1 All	OK
	8.750	3.95	-685.90	0.00	U1 All	OK	14.04	2016.35	1867.91	U1 All	OK
	12.000	3.95	-685.90	0.00	U1 All	ок	14.04	2016.35	2015.78	U1 All	OK
	12.125	3.95	-685.90	0.00	U1 All	OK	14.04	2016.35	2015.78	U1 All	OK
	15.250	3.95	-685.90	0.00	U1 All	ОК	14.04	2016.35	1867.91	U1 All	OK
	22.833	3.95	-685.90	0.00	U1 All	ОК	14.04	2016.35	372.95	U1 All	OK
	24.000	3.95	-685.90	0.00	U1 All		14.04	2016.35	0.00	U1 All	

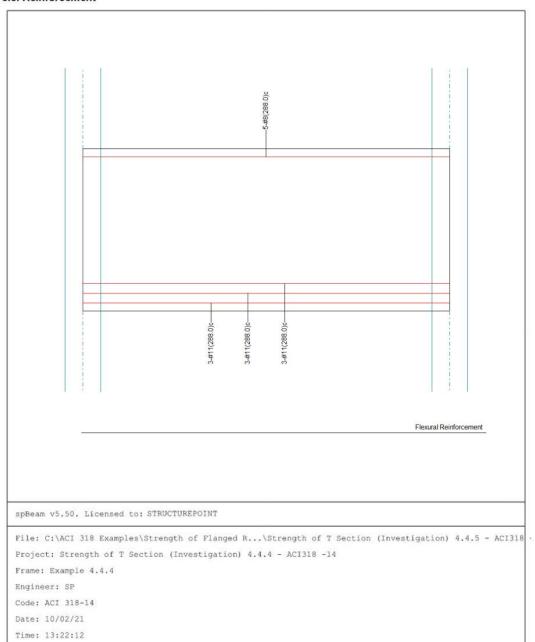
Page | **7** 10/2/2021 1:23 PM

3. Diagrams 3.1. Loads


	17500 lb/ft
	CASE/PATTERN: Live/All
	CASE: Dead
pBeam v5.	50. Licensed to: STRUCTUREPOINT
	CI 318 Examples\Strength of Flanged R\Strength of T Section (Investigation) 4.4.5 - ACI3 trength of T Section (Investigation) 4.4.4 - ACI318 -14
	mple 4.4.4
rame: Exa	
	SP
Frame: Exa Engineer: : Code: ACI	
Engineer:	318-14

Page | 8 10/2/2021 1:23 PM

3.2. Moment Capacity



Page | 9 10/2/2021 1:23 PM

3.3. Reinforcement

6. Comparison of Design Results

Table 1 - Comparison of Results										
Method	${f A}_{s, provided,}$	A's,provided,	b _f ,	φM _n ,						
Method	in. ²	in. ²	in.	kip-ft						
Reference	14.04	3.95	30	2019.00						
Hand	14.04	3.95	30	2016.10						
spBeam	14.04	3.95	30	2016.35						

In all of the hand calculations and the reference used illustrated above, the results are in precise agreement with the automated exact results obtained from the spBeam program. However, the reference results are slightly different compared with the hand calculations results and the program results due to the cumulative rounding off in the numbers through the solution steps.