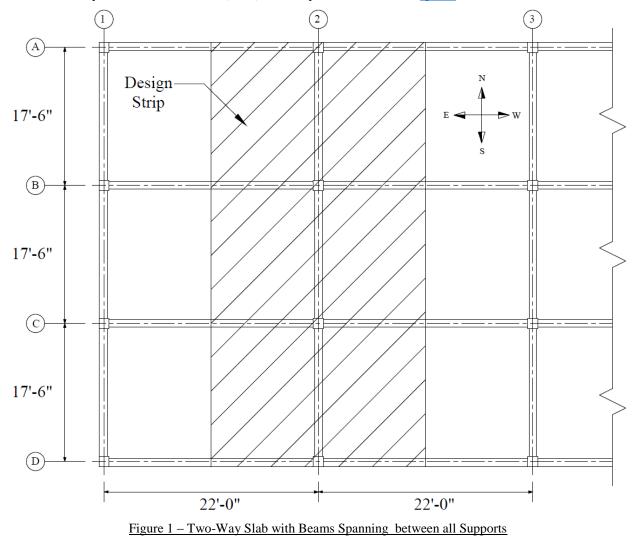


Two-Way Concrete Floor Slab with Beams Design and Detailing



Two-Way Concrete Floor Slab with Beams Design and Detailing

Design the slab system shown in Figure 1 for an intermediate floor where the story height = 12 ft, column crosssectional dimensions = 18 in. x 18 in., edge beam dimensions = 14 in. x 27 in., interior beam dimensions = 14 in. x 20 in., and unfactored live load = 100 psf. The lateral loads are resisted by shear walls. Normal weight concrete with ultimate strength (fc'= 4000 psi) is used for all members, respectively. And reinforcement with Fy = 60,000 psi is used. Use the Equivalent Frame Method (EFM) and compare the results with spSlab model results.

Contents

1.	Preliminary Slab Thickness Sizing	1
2.	Two-Way Slab Analysis and Design – Using Equivalent Frame Method (EFM)	4
	2.1. Equivalent frame method limitations	5
	2.2. Frame members of equivalent frame	5
	2.3. Equivalent frame analysis	11
	2.4. Design moments	14
	2.5. Distribution of design moments	15
	2.6. Flexural reinforcement requirements	17
	2.7. Column design moments	24
3.	Design of Interior, Edge, and Corner Columns	25
4.	Two-Way Slab Shear Strength	25
	4.1. One-Way (Beam action) Shear Strength	25
	4.2. Two-Way (Punching) Shear Strength	26
5.	Two-Way Slab Deflection Control (Serviceability Requirements)	29
	5.1. Immediate (Instantaneous) Deflections	29
	5.2. Time-Dependent (Long-Term) Deflections (Δ_{it})	40
6.	spSlab Software Program Model Solution	41
7.	Summary and Comparison of Design Results	63
8.	Conclusions & Observations	66

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10)

International Code Council, 2012 International Building Code, Washington, D.C., 2012

References

Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland Cement Association.

Concrete Floor Systems (Guide to Estimating and Economizing), Second Edition, 2002 David A. Fanella

Simplified Design of Reinforced Concrete Buildings, Fourth Edition, 2011 Mahmoud E. Kamara and Lawrence C. Novak

Design Data

Floor-to-Floor Height = 12 ft (provided by architectural drawings)

Columns = 18 x 18 in.

Interior beams = 14×20 in.

Edge beams = 14×27 in.

 $w_c = 150 \text{ pcf}$

$$f_c$$
' = 4,000 psi

$$f_y = 60,000 \text{ psi}$$

Live load, $L_o = 100 \text{ psf}$ (Office building)

Solution

1. Preliminary Slab Thickness Sizing

Control of deflections.

In lieu of detailed calculation for deflections, ACI 318 Code gives minimum thickness for two-way slab with beams spanning between supports on all sides in *Table 8.3.1.2*.

Beam-to-slab flexural stiffness (relative stiffness) ratio (α_f) is computed as follows:

$$\alpha_f = \frac{E_{cb}I_b}{E_{cs}I_s} = \frac{I_b}{I_s}$$
ACI 318-14 (8.10.2.7b)

The moment of inertia for the effective beam and slab sections can be calculated as follows:

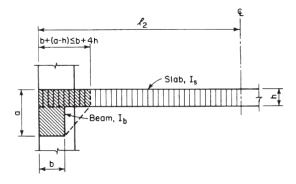
$$I_s = \frac{l_2 h^3}{12}$$
 and $I_b = \left(\frac{ba^3}{12}\right) \times f$

Then,

ACI 318-14 (8.3.1.2)

ASCE/SEI 7-10 (Table 4-1)

$$\alpha_f = \left(\frac{b}{l_2}\right) \left(\frac{a}{h}\right)^3 f$$


For Edge Beams:

The effective beam and slab sections for the computation of stiffness ratio for edge beam is shown in Figure 2.

For North-South Edge Beam:

$$l_{2} = \frac{22 \times 12}{2} + \frac{18}{2} = 141 \text{ in.}$$
$$\frac{a}{h} = \frac{27}{6} = 4.5$$
$$\frac{b}{h} = \frac{14}{6} = 2.33$$
$$f = 1.47 \text{ using Figure 3.}$$

$$\alpha_f = \left(\frac{14}{141}\right) \left(\frac{27}{6}\right)^3 (1.47) = 13.30$$

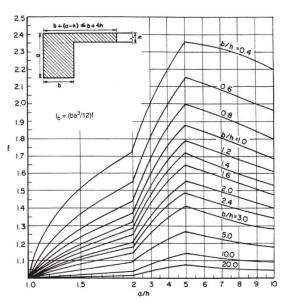


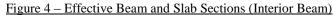
Figure 3 – Beam Stiffness (Edge Beam)

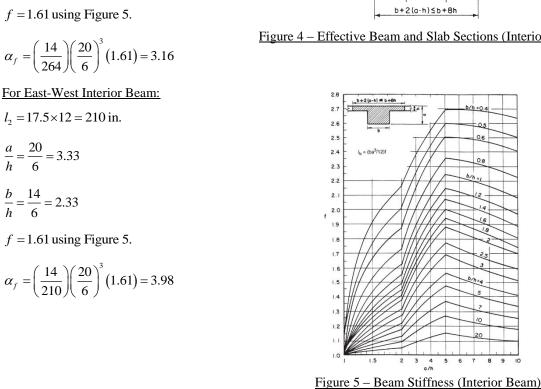
For East-West Edge Beam:

$$l_2 = \frac{17.5 \times 12}{2} + \frac{18}{2} = 114 \text{ in.}$$
$$\frac{a}{h} = \frac{27}{6} = 4.5$$
$$\frac{b}{h} = \frac{14}{6} = 2.33$$

f = 1.47 using Figure 3.

$$\alpha_f = \left(\frac{14}{114}\right) \left(\frac{27}{6}\right)^3 (1.47) = 16.45$$




For interior Beams:

The effective beam and slab sections for the computation of stiffness ratio for interior beam is shown in Figure 4.

For North-South Interior Beam:

$$l_2 = 22 \times 12 = 264$$
 in.
 $\frac{a}{h} = \frac{20}{6} = 3.33$
 $\frac{b}{h} = \frac{14}{6} = 2.33$
 $f = 1.61$ using Figure 5

Since $\alpha_f > 2.0$ for all beams, the minimum slab thickness is given by:

$$h_{\min} = greater \ of \left\{ \frac{l_n \left(0.8 + \frac{f_y}{200,000} \right)}{36 + 9\beta} \right\}$$

ACI 318-14 (8.3.1.2)

Where:

 l_n = clear span in the long direction measured face to face of columns = 20.5 ft = 246 in.

$$\beta = \frac{\text{clear span in the long direction}}{\text{clear span in the short direction}} = \frac{22 - 18/12}{17.2 - 18/12} = 1.28$$

$$h_{\min} = greater \ of \left\{ \frac{246 \left(0.8 + \frac{60,000}{200,000} \right)}{36 + 9(1.28)} = 5.7 \right\} = 5.7 \text{ in}$$

Use 6 in. slab thickness.

2. Two-Way Slab Analysis and Design – Using Equivalent Frame Method (EFM)

ACI 318 states that a slab system shall be designed by any procedure satisfying equilibrium and geometric compatibility, provided that strength and serviceability criteria are satisfied. Distinction of two-systems from one-way systems is given by <u>ACI 318-14 (R8.10.2.3 & R8.3.1.2)</u>.

ACI 318 permits the use of Direct Design Method (DDM) and Equivalent Frame Method (EFM) for the gravity load analysis of orthogonal frames and is applicable to flat plates, flat slabs, and slabs with beams. The following sections outline the solution per EFM and <u>spSlab</u> software. The solution per DDM can be found in the "Two-Way Plate Concrete Floor System Design" example.

EFM is the most comprehensive and detailed procedure provided by the ACI 318 for the analysis and design of two-way slab systems where the structure is modeled by a series of equivalent frames (interior and exterior) on column lines taken longitudinally and transversely through the building.

The equivalent frame consists of three parts:

- 1) Horizontal slab-beam strip, including any beams spanning in the direction of the frame. Different values of moment of inertia along the axis of slab-beams should be taken into account where the gross moment of inertia at any cross section outside of joints or column capitals shall be taken, and the moment of inertia of the slab-beam at the face of the column, bracket or capital divide by the quantity $(1-c_2/l_2)^2$ shall be assumed for the calculation of the moment of inertia of slab-beams from the center of the column to the face of the column, bracket or capital.
- 2) Columns or other vertical supporting members, extending above and below the slab. Different values of moment of inertia along the axis of columns should be taken into account where the moment of inertia of columns from top and bottom of the slab-beam at a joint shall be assumed to be infinite, and the gross cross section of the concrete is permitted to be used to determine the moment of inertia of columns at any cross section outside of joints or column capitals.
 ACI 318-14 (8.11.4)
- 3) Elements of the structure (Torsional members) that provide moment transfer between the horizontal and vertical members. These elements shall be assumed to have a constant cross section throughout their length consisting of the greatest of the following: (1) portion of slab having a width equal to that of the column, bracket, or capital in the direction of the span for which moments are being determined, (2) portion of slab specified in (1) plus that part of the transverse beam above and below the slab for monolithic or fully composite construction, (3) the transverse beam includes that portion of slab on each side of the beam extending a distance equal to the projection of the beam above or below the slab, whichever is greater, but not greater than four times the slab thickness.

2.1. Equivalent frame method limitations

In EFM, live load shall be arranged in accordance with 6.4.3 which requires slab systems to be analyzed and designed for the most demanding set of forces established by investigating the effects of live load placed in various critical patterns. <u>ACI 318-14 (8.11.1.2 & 6.4.3)</u> Complete analysis must include representative interior and exterior equivalent frames in both the longitudinal and transverse directions of the floor. <u>ACI 318-14 (8.11.2.1)</u> Panels shall be rectangular, with a ratio of longer to shorter panel dimensions, measured center-to-center of supports, not to exceed 2. <u>ACI 318-14 (8.10.2.3)</u>

2.2. Frame members of equivalent frame

Determine moment distribution factors and fixed-end moments for the equivalent frame members. The moment distribution procedure will be used to analyze the equivalent frame. Stiffness factors k, carry over factors COF, and fixed-end moment factors FEM for the slab-beams and column members are determined using the design aids tables at <u>Appendix 20A of PCA Notes on ACI 318-11</u>. These calculations are shown below.

a. Flexural stiffness of slab-beams at both ends, K_{sb} .

$$\frac{c_{_{N1}}}{\ell_1} = \frac{18}{(17.5 \times 12)} = 0.0857 \approx 0.1 , \ \frac{c_{_{N2}}}{\ell_2} = \frac{18}{(22 \times 12)} = 0.0682$$

For $c_{F1} = c_{F2}$ stiffness factors, $k_{NF} = k_{FN} = 4.11$

Thus,
$$K_{sb} = k_{NF} \frac{E_c I_{sb}}{\ell_1} = 4.11 \frac{E_c I_{sb}}{\ell_1}$$

Where I_{sb} is the moment of inertia of slab-beam section shown in Figure 6 and can be computed with the aid of Figure 7 as follows:

$$I_{sb} = C_t \left(\frac{b_w h^3}{12}\right) = 2.72 \left(\frac{14 \times 20^3}{12}\right) = 25387 \text{ in.}^4$$
$$K_{sb} = 4.11 \frac{E_c \times 25,387}{17.5 \times 12} = 497 E_c$$

Carry-over factor COF = 0.507

Fixed-end moment FEM = $0.0842 w_{\mu} \ell_2 \ell_1^2$

PCA Notes on ACI 318-11 (Table A1)

PCA Notes on ACI 318-11 (Table A1)

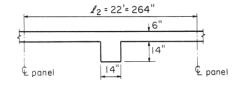


Figure 6 - Cross-Section of Slab-Beam

PCA Notes on ACI 318-11 (Table A1) PCA Notes on ACI 318-11 (Table A1)

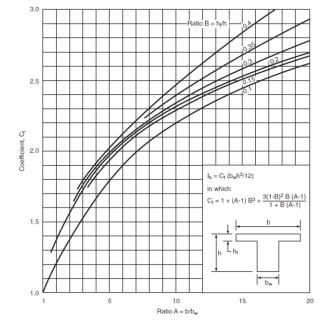


Figure 7 – Coefficient Ct for Gross Moment of Inertia of Flanged Sections

b. Flexural stiffness of column members at both ends, K_c .

Referring to <u>Table A7, Appendix 20A</u>: For Interior Columns: $t_a = 20 - 6/2 = 17 \text{ in}, t_b = 3 \text{ in}.$ $H = 12 \text{ ft} = 144 \text{ in}, H_c = 144 - 17 - 3 = 124 \text{ in}, \frac{t_a}{t_b} = 5.67, \frac{H}{H_c} = 1.16$ Thus, $k_{c,nep} = 6.82 \text{ and } k_{c,battom} = 4.99$ by interpolation. $I_c = \frac{c^4}{12} = \frac{(18)^4}{12} = 8,748 \text{ in}.^4$ $\ell_c = 12 \text{ ft} = 144 \text{ in}.$ $K_c = \frac{k_c E_c I_c}{\ell_c}$ $K_{c,nep} = \frac{6.82 \times 8748 \times E_c}{144} = 414E_c$ $K_{c,chontom} = \frac{4.99 \times 8748 \times E_c}{144} = 303E_c$ For Exterior Columns: $t_a = 27 - 6/2 = 24 \text{ in}, t_b = 3 \text{ in}.$ $H = 12 \text{ ft} = 144 \text{ in}, H_c = 144 - 24 - 3 = 117 \text{ in}, \frac{t_a}{t_b} = 8.0, \frac{H}{H_c} = 1.23$

Thus, $k_{c, top} = 8.57$ and $k_{c, bottom} = 5.31$ by interpolation.

$$I_{c} = \frac{c^{4}}{12} = \frac{(18)^{4}}{12} = 8,748 \text{ in.}^{4}$$

$$\ell_{c} = 12 \text{ ft} = 144 \text{ in.}$$

$$K_{c} = \frac{k_{c}E_{cc}I_{c}}{\ell_{c}} \frac{PCA \text{ Notes on ACI 318-11 (Table A7)}}{\ell_{c}}$$

$$K_{c, \text{top}} = \frac{8.57 \times 8748 \times E_{c}}{144} = 521E_{c}$$

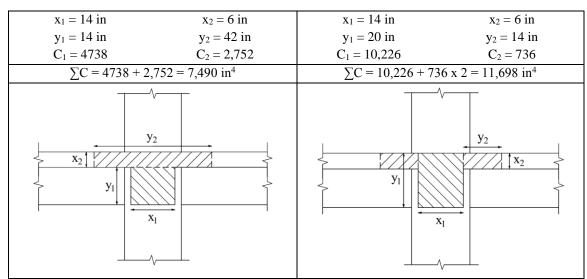
$$K_{c, \text{bottom}} = \frac{5.31 \times 8748 \times E_{c}}{144} = 323E_{c}$$

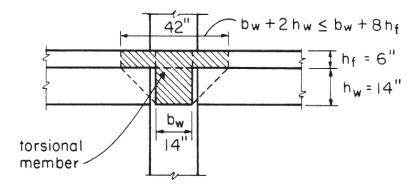
c. Torsional stiffness of torsional members, K_t .

$$K_{t} = \frac{9E_{cs}C}{[\ell_{2}(1 - \frac{c_{2}}{\ell_{2}})^{3}]}$$

For Interior Columns:

$$K_{t} = \frac{9E_{c} \times 11,698}{264(0.932)^{3}} = 493E_{c}$$

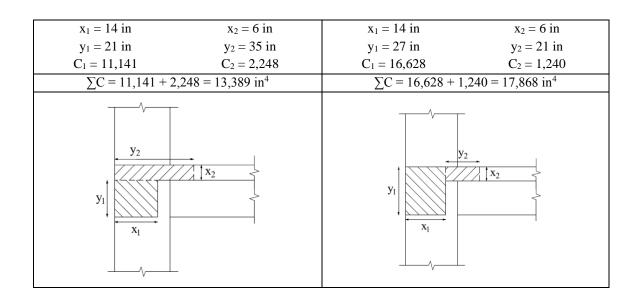

Where:


$$1 - \frac{c_2}{\ell_2} = 1 - \frac{18}{22 \times 12} = 0.932$$

$$C = \sum (1 - 0.63 \frac{x}{y}) (\frac{x^3 y}{3})$$

<u>ACI 318-14 (R.8.11.5)</u>

<u>ACI 318-14 (Eq. 8.10.5.2b)</u>


For Exterior Columns:

$$K_t = \frac{9E_c \times 17,868}{264(0.932)^3} = 752E_c$$

Where:

$$1 - \frac{c_2}{\ell_2} = 1 - \frac{18}{22 \times 12} = 0.932$$
$$C = \sum (1 - 0.63 \frac{x}{y}) (\frac{x^3 y}{3})$$

ACI 318-14 (Eq. 8.10.5.2b)

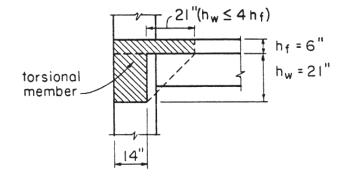


Figure 9 - Attached Torsional Member at Exterior Column

d. Increased torsional stiffness due to parallel beams, K_{ta} .

For Interior Columns:

$$K_{ta} = \frac{K_t I_{sb}}{I_s} = \frac{493E_c \times 25,387}{4752} = 2634E$$

Where:

$$I_{sb} = \frac{l_2 \times h^3}{12} = \frac{264 \times 6^3}{12} = 4752 \text{ in.}^4$$

For Exterior Columns:

$$K_{ta} = \frac{K_{t}I_{sb}}{I_{s}} = \frac{752E_{c} \times 25,387}{4752} = 4017E_{c}$$

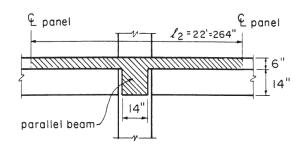


Figure 10 – Slab-Beam in the Direction of Analysis

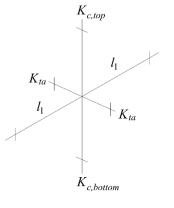
e. Equivalent column stiffness K_{ec}.

$$K_{ec} = \frac{\sum K_c \times \sum K_{ta}}{\sum K_c + \sum K_{ta}}$$

Where $\sum K_{ta}$ is for two torsional members one on each side of the column, and $\sum K_c$ is for the upper and lower columns at the slabbeam joint of an intermediate floor.

For Interior Columns:

$$K_{ec} = \frac{(303E_c + 414E_c)(2 \times 2634E_c)}{(303E_c + 414E_c) + (2 \times 2634E_c)} = 631E_c$$

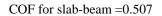

For Exterior Columns:

$$K_{ec} = \frac{(323E_c + 521E_c)(2 \times 4017E_c)}{(323E_c + 521E_c) + (2 \times 4017E_c)} = 764E_c$$

f. Slab-beam joint distribution factors, DF.

At exterior joint,

$$DF = \frac{497E_c}{(497E_c + 764E_c)} = 0.394$$



<u>Figure 11 – Equivalent Column</u> <u>Stiffness</u>

At interior joint,

$$DF = \frac{497E_c}{(497E_c + 497E_c + 631E_c)} = 0.306$$

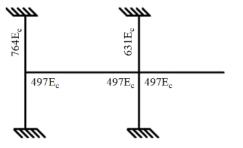


Figure 12 - Slab and Column Stiffness

2.3. Equivalent frame analysis

Determine negative and positive moments for the slab-beams using the moment distribution method. With an unfactored live-to-dead load ratio:

$$\frac{L}{D} = \frac{100}{(150 \times 6/12)} = 1.33 > \frac{3}{4}$$

The frame will be analyzed for five loading conditions with pattern loading and partial live load as allowed by <u>ACI 318-14 (6.4.3.3).</u>

a. Factored load and Fixed-End Moments (FEM's).

Factored dead load $q_{Du} = 1.2(75+9.3) = 101 \text{ psf}$ Where (9.3 psf = (14 x 14) / 144 x 150 / 22 is the weight of beam stem per foot divided by l_2) Factored live load $q_{Lu} = 1.6(100) = 160 \text{ psf}$ Factored load $q_u = q_{Du} + q_{Lu} = 261 \text{ psf}$ FEM's for slab-beam = $m_{NF}q_u \ell_2 \ell_1^2$ FEM due to $q_{Du} + q_{Lu} = 0.0842 \times (0.261 \times 22) \times 17.5^2 = 148.1 \text{ ft-kip}$ FEM due to $q_{Du} + \frac{3}{4}q_{Lu} = 0.0842 \times (0.221 \times 22) \times 17.5^2 = 125.4 \text{ ft-kip}$ FEM due to $q_{Du} = 0.0842 \times (0.101 \times 22) \times 17.5^2 = 57.3 \text{ ft-kip}$

b. Moment distribution.

Moment distribution for the five loading conditions is shown in Table 1. Counter-clockwise rotational moments acting on member ends are taken as positive. Positive span moments are determined from the following equation:

$$M_{u(midspan)} = M_o - \frac{(M_{uL} + M_{uR})}{2}$$

Where M_o is the moment at the midspan for a simple beam.

When the end moments are not equal, the maximum moment in the span does not occur at the midspan, but its value is close to that midspan for this example.

its varae is crose to that independent for and examp

$$M_u^+ = (0.261 \times 22) \frac{17.5^2}{8} - \frac{(93.1 + 167.7)}{2} = 89.4 \text{ ft-kip}$$

Positive moment span 2-3 for loading (1):

$$M_u^+ = (0.261 \times 22) \frac{17.5^2}{8} - \frac{(153.6 + 153.6)}{2} = 66.2 \text{ ft-kip}$$

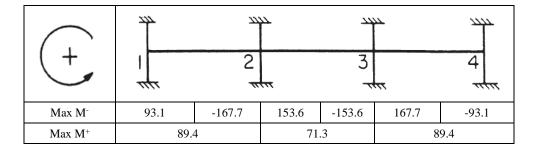
	Table 1 – Moment Distribution for Partial Frame (Transverse Direction)												
Joint	1	2		3		4							
Member	1-2	2-1	2-3	3-2	3-4	4-3	(+	<u>**</u>	7777	<u></u>			
DF	0.394	0.306	0.306	0.306	0.306	0.394							
COF	0.507	0.507	0.507	0.507	0.507	0.507							

			Load	ing (1) A	ll spans l	oaded wi	th full factored live load
FEM	148.1	-148.1	148.1	-148.1	148.1	-148.1	
Dist	-58.4	0	0	0	0	58.4	
СО	0	-29.6	0	0	29.6	0	
Dist	0	9.1	9.1	-9.1	-9.1	0	
СО	4.6	0	-4.6	4.6	0	-4.6	Columns assumed fixed at remote ends
Dist	-1.8	1.4	1.4	-1.4	-1.4	1.8	
СО	0.7	-0.9	-0.7	0.7	0.9	-0.7	A B C D
Dist	-0.3	0.5	0.5	-0.5	-0.5	0.3	(1) Loading pattern for design moments in all spans with $L \leq 3/4$ D
СО	0.3	-0.1	-0.3	0.3	0.1	-0.3	(1) Loading pattern for design moments in all spans with L S 3/4 D
Dist	-0.1	0.1	0.1	-0.1	-0.1	0.1	
М	93.1	-167.6	153.6	-153.6	167.6	-93.1	
Midspan M	8	9.5	60	5.2	89	9.5	

		L	oading (2	2) First a	nd third	spans load	led with 3/4 factored live load
FEM	125.4	-125.4	57.3	-57.3	125.4	-125.4	
Dist	-49.4	20.8	20.8	-20.8	-20.8	49.4	
CO	10.6	-25.1	-10.6	10.6	25.1	-10.6	
Dist	-4.2	10.9	10.9	-10.9	-10.9	4.2	
CO	5.5	-2.1	-5.5	5.5	2.1	-5.5	1 wd+3/4 w/
Dist	-2.2	2.3	2.3	-2.3	-2.3	2.2	
CO	1.2	-1.1	-1.2	1.2	1.1	-1.2	
Dist	-0.5	0.7	0.7	-0.7	-0.7	0.5	(2) Loading pattern for positive design moment in span AB*
CO	0.4	-0.2	-0.4	0.4	0.2	-0.4	
Dist	-0.1	0.2	0.2	-0.2	-0.2	0.1	
М	86.7	-119	74.5	-74.5	119	-86.7	
Midspan M	83	3.3	10).6	8.	3.3	

			Loadi	ing (3) Ce	nter spa	n loaded	with 3/4 factored live load
FEM	57.3	-57.3	125.4	-125.4	57.3	-57.3	
Dist	-22.6	-20.8	-20.8	20.8	20.8	22.6	
СО	-10.6	-11.4	10.6	-10.6	11.4	10.6	
Dist	4.2	0.3	0.3	-0.3	-0.3	-4.2	
СО	0.1	2.1	-0.1	0.1	-2.1	-0.1	1 w _d +3/4 w _d
Dist	-0.1	-0.6	-0.6	0.6	0.6	0.1	wd wd
СО	-0.3	0	0.3	-0.3	0	0.3	A B C D
Dist	0.1	-0.1	-0.1	0.1	0.1	-0.1	(3) Loading pattern for positive design moment in span BC*
СО	0	0.1	0	0	-0.1	0	
Dist	0	0	0	0	0	0	
М	28.1	-87.7	115	-115	87.7	-28.1	
Midspan M	27	7.2	7	1.3	2	7.2	

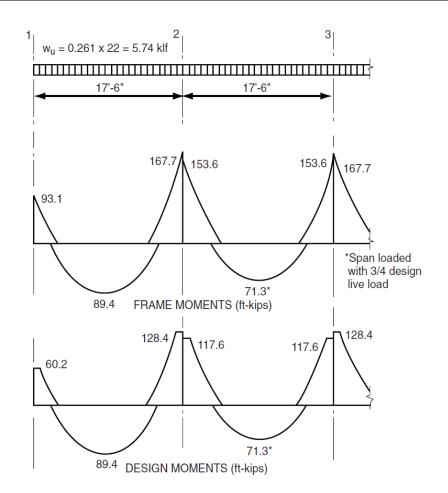
Loadi	ng (4) Fir	st span loaded wit	h 3/4 fact	ored live	load and beam-slab assumed fixed at support two spans away
FEM	125.4	-125.4	57.3	-57.3	
Dist	-49.4	20.8	20.8	0	
СО	10.6	-25	0	10.6	
Dist	-4.2	7.7	7.7	0	
CO	3.9	-2.1	0	3.9	w _d +3/4 w _L w _d Slab beam assumed fixed at support two
Dist	-1.5	0.6	0.6	0	A B C spans distance
CO	0.3	-0.8	0	0.3	(4) Loading pattern for negative design moment at support A*
Dist	-0.1	0.2	0.2	0	Civitation and a second s
СО	0.1	-0.1	0	0.1	
Dist	0	0	0	0	
М	85.1	-124.1	86.6	-42.4	

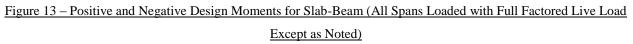

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Midspan M	81.5	20.6	

		Loa	ding (5)	First and	second	spans loa	aded with 3/4 factored live load
FEM	125.4	-125.4	125.4	-125.4	57.3	-57.3	
Dist	-49.4	0.0	0.0	20.8	20.8	22.6	
CO	0.0	-25.1	10.6	0.0	11.4	10.6	
Dist	0.0	4.4	4.4	-3.5	-3.5	-4.2	
CO	2.2	0.0	-1.8	2.2	-2.1	-1.8	wd+3/4wg wd
Dist	-0.9	0.5	0.5	0.0	0.0	0.7	
СО	0.3	-0.4	0.0	0.3	0.4	0.0	A B C D
Dist	-0.1	0.1	0.1	-0.2	-0.2	0.0	رتاب مراجع مراجع مراجع مراجع مراجع (5) Loading pattern for negative design moment at support B*
СО	0.1	-0.1	-0.1	0.1	0.0	-0.1	
Dist	0.0	0.0	0.0	0.0	0.0	0.0	
М	77.6	-146.0	139.1	-105.7	84.1	-29.5	
Midspan M	74	4.3	6.	3.7	28	8.3	


2.4. Design moments


Positive and negative factored moments for the slab system in the direction of analysis are plotted in Figure 13. The negative design moments are taken at the faces of rectilinear supports but not at distances greater than $0.175\ell_1$ from the centers of supports. <u>ACI 318-14 (8.11.6.1)</u>

 $\frac{18in.}{2} = 0.75 \text{ ft} < 0.175 \times 17.5 = 3.1 \text{ ft} \text{ (use face of support location)}$

2.5. Distribution of design moments

a. Check whether the moments calculated above can take advantage of the reduction permitted by ACI 318-14

<u>(8.11.6.5)</u>:

Slab systems within the limitations of <u>ACI 318-14 (8.10.2)</u> may have the resulting reduced in such proportion that the numerical sum of the positive and average negative moments not be greater than the total static moment M_o given by <u>Equation 8.10.3.2</u> in the <u>ACI 318-14</u>:

ACI 318-14 (8.11.6.5)

Check Applicability of Direct Design Method:

1. There is a minimum of three continuous spans in each direction	ACI 318-14 (8.10.2.1)
2. Successive span lengths are equal	ACI 318-14 (8.10.2.2)
3. Long-to-Short ratio is 22/17.5 = 1.26 < 2.0	ACI 318-14 (8.10.2.3)
4. Column are not offset	ACI 318-14 (8.10.2.4)
5. Loads are gravity and uniformly distributed with service live-to-dead ratio of 1	1.33 < 2.0
<u>A0</u>	<u>CI 318-14 (8.10.2.5 and 6)</u>

6. Check relative stiffness for slab panel:		<u>ACI 318-14 (8.10.2.7)</u>
Interior Panel:		
$\alpha_{f1} = 3.16$, $l_2 = 22 \times 12 = 264$ in.		
$\alpha_{f2} = 3.98$, $l_1 = 17.5 \times 12 = 210$ in.		
$\frac{\alpha_{f1}l_2^2}{\alpha_{f2}l_1^2} = \frac{3.16 \times 264^2}{3.98 \times 210^2} = 1.25 \rightarrow 0.2 < 1.25 < 5.0$	<i>O.K</i> .	<u>ACI 318-14 (Eq. 8.10.2.7a)</u>
Interior Panel:		
$\alpha_{f1} = 3.16$, $l_2 = 22 \times 12 = 264$ in.		
$\alpha_{f2} = 16.45$, $l_1 = 17.5 \times 12 = 210$ in.		
$\frac{\alpha_{f1}l_2^2}{\alpha_{f2}l_1^2} = \frac{3.16 \times 264^2}{16.45 \times 210^2} = 0.30 \rightarrow 0.2 < 0.30 < 5.0$	<i>O.K</i> .	<u>ACI 318-14 (Eq. 8.10.2.7a)</u>

All limitation of <u>ACI 318-14 (8.10.2)</u> are satisfied and the provisions of <u>ACI 318-14 (8.11.6.5)</u> may be applied:

$$M_o = \frac{q_u \ell_2 \ell_n^2}{8} = 0.261 \times 22 \times \frac{(16)^2}{8} = 183.7 \text{ ft-kip}$$
ACI 318-14 (Eq. 8.10.3.2)

End spans: $89.4 + \frac{(60.2 + 128.4)}{2} = 183.7$ ft-kip

Interior span:
$$71.2 + \frac{(117.6 + 117.6)}{2} = 188.8$$
 ft-kip

To illustrate proper procedure, the interior span factored moments may be reduced as follows:

Permissible reduction = 183.7/188.8 = 0.973

Adjusted negative design moment = $117.6 \times 0.973 = 114.3$ ft-kip

Adjusted positive design moment = $71.2 \times 0.973 = 69.3$ ft-kip

$$M_o = 183.7 \text{ ft-kip}$$

b. Distribute factored moments to column and middle strips:

The negative and positive factored moments at critical sections may be distributed to the column strip and the two half-middle strips of the slab-beam according to the Direct Design Method (DDM) in 8.10, provided that <u>Eq. 8.10.2.7(a)</u> is satisfied. <u>ACI 318-14 (8.11.6.6)</u>

Since the relative stiffness of beams are between 0.2 and 5.0 (see step 2.4.1.6), the moments can be distributed across slab-beams as specified in <u>ACI 318-14 (8.10.5 and 6)</u> where:

$$\frac{\ell_2}{\ell_1} = \frac{22}{17.5} = 1.257$$

$$\frac{\alpha_{f1}\ell_2}{\ell_1} = 3.16 \times 1.257 = 3.97$$
$$\beta_t = \frac{C}{2I_s} = \frac{17,868}{2 \times 4,752} = 1.88$$

Where
$$I_s = \frac{22 \times 12 \times 6^3}{12} = 4,752 \text{ in.}^4$$

 $C = 17,868 \text{ in.}^4$ (see Figure 9)

Factored moments at critical sections are summarized in Table 2.

		Table 2 - Late	eral distrib	ution of fac	tored mome	nts	
				Colu	Moments in Two		
		Factored Moments (ft-kips)	Percent*	Moment (ft-kips)	Beam Strip Moment (ft-kips)	Column Strip Moment (ft-kips)	Half-Middle Strips** (ft-kips)
5 1	Exterior Negative	60.2	75	45.2	38.4	6.8	15
End Span	Positive	89.4	67	59.9	50.9	9.0	29.5
Span	Interior Negative	128.4	67	86	73.1	12.9	42.4
Interior	Negative	117.6	67	78.8	67.0	11.8	38.8
Span	Positive	71.3	67	47.8	40.6	7.2	23.5
*Since α_1	$l_2/l_1 > 1.0$ beams	must be proportion	ned to resist	85 percent	of column st	rip per ACI 31	8-14 (8.10.5.7)
**That pe	ortion of the facto	ored moment not re	esisted by th	e column st	trip is assigne	ed to the two h	alf-middle strips

2.6. Flexural reinforcement requirements

a. Determine flexural reinforcement required for strip moments

The flexural reinforcement calculation for the column strip of end span - interior negative location is

provided below:

 $M_{u} = 12.9 \text{ ft-kip}$

Assume tension-controlled section ($\varphi = 0.9$)

Column strip width, b = (17.5 x 12) / 2 = 91 in.

Use average d = 6 - 0.75 - 0.5/2 = 5 in.

$$A_{s} = \frac{0.85 \times f_{c}^{'} \times b}{f_{y}} \left(d - \sqrt{d^{2} - \frac{2 \times M_{u}}{\varphi \times 0.85 \times f_{c}^{'} \times b}} \right)$$
$$A_{s} = \frac{0.85 \times 4000 \times 91}{60,000} \left(5 - \sqrt{5^{2} - \frac{2 \times 12.9 \times 12,000}{0.9 \times 0.85 \times 4000 \times 91}} \right) = 0.580 \text{ in.}^{2}$$

$$A_{s,min} = max \begin{bmatrix} 0.0018 \times b \times h \\ 0.0014 \times b \times h \end{bmatrix} = max \begin{bmatrix} 0.0018 \ (14)(19) \\ 0.0014 \ (14)(19) \end{bmatrix} = max \begin{bmatrix} 0.983 \\ 0.764 \end{bmatrix} = 0.983 \text{ in}^2 < 0.580 \text{ in}^2 \text{ in}^2$$

$$\therefore A_s = 0.983$$
 in.

Maximum spacing
$$s_{max} = 2h = 2 \times 6 = 12$$
 in. < 18 in. ACI 318-14 (8.7.2.2)

Provide 8 - #4 bars with $A_s = 1.60$ in.² and s = 91/8 = 11.37 in. $\leq s_{max}$

The flexural reinforcement calculation for the beam strip of end span - interior negative location is provided below:

$$M_{u} = 73.1 \, \text{ft-kip}$$

Assume tension-controlled section ($\varphi = 0.9$)

Beam strip width, b = 14 in.

Use average d = 20 - 0.75 - 0.5/2 = 19 in.

$$A_{s} = \frac{0.85 \times f_{c}^{'} \times b}{f_{y}} \left(d - \sqrt{d^{2} - \frac{2 \times M_{u}}{\varphi \times 0.85 \times f_{c}^{'} \times b}} \right)$$

$$A_{s} = \frac{0.85 \times 4000 \times 14}{60,000} \left(18.25 - \sqrt{19^{2} - \frac{2 \times 73.1 \times 12,000}{0.9 \times 0.85 \times 4000 \times 14}} \right) = 0.881 \text{ in.}^{2}$$

$$A_{s,min} = max \left[\frac{3\sqrt{f_{c}^{'}}}{f_{y}} bd}{\frac{200}{f_{y}} bd} \right] = max \left[\frac{3\sqrt{4000}}{60,000} (14)(19)}{\frac{200}{60,000} (14)(19)} \right] = max \left[\frac{0.841}{0.887} \right] = 0.887 \text{ in.}^{2} < 0.881 \text{ in.}^{2}$$

$$\therefore A_{s} = 0.887 \text{ in.}^{2}$$

$$\therefore A_{s} = 0.887 \text{ in.}^{2}$$

Provide 5 - #4 bars with $A_s = 1.00$ in.²

All the values on Table 3 are calculated based on the procedure outlined above.

Structure Point

19

	Table 3 - Requ	iired Slab Re	einforcer	nent for F	Flexure [Equiv	alent Frame	Method (EFM)]	
Span	Mu (ft-kip)	b * (in.)	d ** (in.)	A _s Req'd for flexure (in. ²)	Min As [†] †† (in. ²)	Reinforcement Provided	A _s Prov. for flexure (in. ²)	
				End S	Span	I		
	Exterior Negative	38.4	14	19.00	0.456	0.608	4 - #4	0.8
Beam Strip	Positive	50.9	14	18.25	0.634	0.852	5 - #4	1.0
	Interior Negative	73.1	14	19.00	0.881	0.887	5 - #4	1.0
	Exterior Negative	6.8	91	5.00	0.304	0.983	8 - #4	1.6
Column Strip	Positive	9.0	91	5.00	0.403	0.983	8 - #4	1.6
Sulp	Interior Negative	12.9	91	5.00	0.580	0.983	8 - #4	1.6
	Exterior Negative	15.0	159	5.00	0.672	1.717	14 - #4	2.8
Middle Strip	Positive	29.5	159	5.00	1.331	1.717	14 - #4	2.8
	Interior Negative	42.4	159	5.00	1.926	1.717	14 - #4	2.8
				Interior	: Span			
Beam Strip	Positive	40.6	14	18.25	0.503	0.671	4 - #4	0.8
Column Strip	Positive	7.2	91	5.00	0.322	0.983	8 - #4	1.6
Middle Strip	Positive	23.5	159	5.00	1.057	1.717	14 - #4	2.8
* Middle strip * Beam strip w	width, $b = (17.5 + 100)$ width, $b = 22*12-100$ width, $b = 14$ in. b = 14 = 100	(17.5*12)/2 =	= 159 in.	mn and M	iddle strips			
** Use average	d = 20 - 1.5 - 0.5	/2 = 18.25 in.	for Bear	n strip Pos	sitive moment i	regions		
** Use average	d = 20 - 0.75 - 0.3	5/2 = 19 in. for	or Beam	strip Nega	tive moment re	egions		
† Min. $A_s = 0.0$	$0018 \times b \times h = 0.0$	$108 \times b$ for C	Column a	nd Middle	e strips		ACI 31	8-14 (7.6.1.1)
[†] Min. $A_s = mi$	in (3(fc')^0.5/fy*b*	^c d, 200/f _y *b*	d) for Be	eam strip			ACI 318	8-14 (9.6.1.2)
^{††} Min. $A_s = 1$	$.333 \times \text{As Req'd if}$	As provided	>= 1.33	$3 \times \text{As Re}$	eq'd for Beam s	trip	ACI 318	8-14 (9.6.1.3)
$s_{max} = 2 \times h =$	12 in. < 18 in.						ACI 318	8-14 (8.7.2.2)

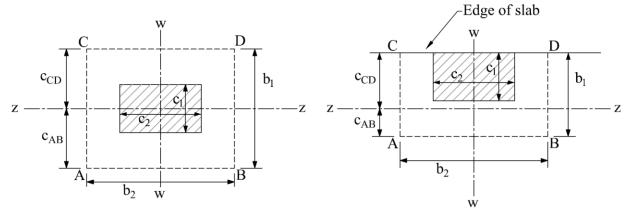
b. Calculate additional slab reinforcement at columns for moment transfer between slab and column by flexure

Portion of the unbalanced moment transferred by flexure is $\gamma_f \ge M_u$

Where:

$$\gamma_f = \frac{1}{1 + (2/3) \times \sqrt{b_1/b_2}}$$
ACI 318-14 (8.4.2.3.2)

 b_1 = Dimension of the critical section b_o measured in the direction of the span for which moments are determined in ACI 318, Chapter 8.


- b_2 = Dimension of the critical section b_o measured in the direction perpendicular to b_1 in ACI 318, Chapter 8.
- b_o = Perimeter of critical section for two-way shear in slabs and footings.

 $b_b = \text{Effective slab width} = c_2 + 3 \times h$

For Exterior Column:

$$b_1 = c_1 + \frac{d}{2} = 18 + \frac{5}{2} = 20.5$$
 in., $b_2 = c_2 + d = 18 + 5 = 23$ in., $b_b = c_2 + 3h = 18 + 3$ (6) = 36 in.
 $\gamma_f = \frac{1}{\sqrt{1 + 16}} = 0.614$

$$\gamma_f = \frac{1}{1 + (2/3) \times \sqrt{20.5/23}} = 0.6$$

Critical shear perimeter for interior column

- - - -

. .

Critical shear perimeter for exterior column

Figure 14 – Critical Shear Perimeters for Columns

$$\gamma_{f}M_{u,net} = 0.614 \times 93.1 = 57.14 \text{ ft-kip}$$

$$A_{s,req'd} = \frac{0.85 \times f_{c} \times b_{b}}{f_{y}} \left(d - \sqrt{d^{2} - \frac{2 \times \gamma_{f}M_{u,net}}{\varphi \times 0.85 \times f_{c} \times b_{b}}} \right)$$

$$A_{s,req'd} = \frac{0.85 \times 4000 \times 36}{60,000} \left(5 - \sqrt{5^{2} - \frac{2 \times 57.14 \times 12,000}{0.9 \times 0.85 \times 4000 \times 36}} \right) = 2.973 \text{ in.}^{2}$$

$$A_{s,nin} = max \left[\begin{array}{c} 0.0018 \times b \times h \\ 0.0014 \times b \times h \end{array} \right] = max \left[\begin{array}{c} 0.0018 (14)(19) \\ 0.0014 (14)(19) \end{array} \right] = max \left[\begin{array}{c} 0.983 \\ 0.764 \end{array} \right] = 0.983 \text{ in.}^{2} > 2.973 \text{ in.}^{2}$$

$$\therefore A_{s,req'd} = 2.973 \text{ in.}^{2}$$

$$A_{s,provided} = (A_{s,provided})_{(beam)} + (A_{s,provided})_{(b_{b} - b_{beam})}$$

$$A_{s,provided} = 4 \times 0.2 + 8 \times 0.2 \times \frac{36 - 14}{91} = 1.187 \text{ in.}^{2} < A_{s,req'd} = 2.973 \text{ in.}^{2}$$

: Additional slab reinforcement at the exterior column is required.

$$A_{rea'd, add} = 2.973 - 1.187 = 1.786 \text{ in.}^2$$

Use 10 - #4 $\rightarrow A_{provided, add} = 10 \times 0.2 = 2.0 \text{ in.}^2 < A_{reg'd, add} = 1.786 \text{ in.}^2$

Table	4 - Additional Slab	Reinforcement at	column		ment transf (EFM)]	er between s	slab and column	[Equivalent Frame Me	thod		
Sp	an Location	Effective slab width, b _b (in.)	d (in.)	γr	M _u * (ft-kip)	$\begin{array}{l} \gamma_f M_u \\ (\textit{ft-kip}) \end{array}$	A _s req'd within b _b (in. ²)	$\begin{array}{c} \mathbf{A}_{s} \text{prov. for} \\ \text{flexure within } \mathbf{b}_{b} \\ (\text{in.}^{2}) \end{array}$	Add'l Reinf.		
End Span											
Column	Exterior Negative	36	5	0.614	93.1	57.14	2.973	1.187	10-#4		
Strip	Interior Negative	36	5	0.600	44.5	26.70	1.265	1.387	-		
*M _u is tak	en at the centerline of	f the support in Eq	uivalent	Frame M	lethod solution	on.					

b. Determine transverse reinforcement required for beam strip shear

The transverse reinforcement calculation for the beam strip of end span – exterior location is provided below.

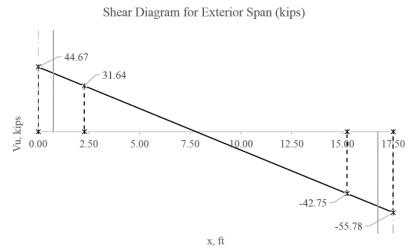


Figure 15 – Shear at critical sections for the end span (at distance d from the face of the column)

$$d = h - c_{clear} - \frac{d_{stirrup}}{2} = 20 - 1.5 - \frac{0.5}{2} = 18.25$$
 in. (using #4 stirrups)

The required shear at a distance d from the face of the supporting column $V_{u_{d}}$ = 31.64 kips (Figure 15).

$$\varphi_{v}V_{c} = \varphi_{v} \times 2 \times \sqrt{f_{c}} \times b \times d \qquad \underline{ACI 318-14 (22.5.5.1)}$$

$$\varphi_v V_c = 0.75 \times 2 \times \sqrt{4000} \times 14 \times 18.25 = 24.25 \text{ kips} < V_{u_d} = 31.64 \text{ kip}$$

: Stirrups are required.

Distance from the column face beyond which minimum reinforcement is required:

$$V_{s} = \frac{V_{u_{-d}} - \varphi_{v}V_{c}}{\varphi_{v}}$$

$$V_{s} = \frac{31.64 - 24.25}{0.75} = 9.85 \text{ kip} < V_{s,max} = 129.31 \text{ kip}$$
O.K.

spislab

$$V_{s,max} = 8 \times \sqrt{f_c}^{-1} \times b \times d = 8 \times \sqrt{4000} \times 14 \times 18.25 = 129.31 \text{ kip}$$

$$\frac{A_{c,req'd}}{s} = \frac{V_{s}}{f_{y_r} \times d} = \frac{9.85 \times 1000}{60,000 \times 18.25} = 0.009 \text{ in.}^2/\text{in.}$$

$$\frac{A_{c,req'd}}{s} = max \left[\frac{0.75 \sqrt{f_c}}{f_{y_r}} b \right]$$

$$\frac{A_{c,min}}{s} = max \left[\frac{0.75 \sqrt{4000}}{60,000} (14) \\ \frac{50}{60,000} (14) \\ \frac{50}{60,000} (14) \\ \frac{50}{60,000} (14) \\ \frac{50}{60,000} (14) \\ \frac{50}{s} < \frac{A_{c,req'd}}{s} \rightarrow \therefore \text{ use } \frac{A_{c,req'd}}{s} = \frac{A_{c,min}}{s}$$

$$s_{req'd} = \frac{n \times A_{strong}}{\frac{A_{c,req'd}}{s}} = \frac{2 \times 0.2}{0.0117} = 34.28 \text{ in.}$$

$$V_s = 9.85 \text{ kips } < 4 \times \sqrt{f_c} \times b \times d = 4 \times \sqrt{4000} \times 14 \times 18.25 = 64.66 \text{ kips}$$

$$\therefore s_{max} = Lesser of \left[\frac{d}{2} \\ \frac{2}{24} \right] = Lesser of \left[\frac{18.25}{2} \\ \frac{24}{24} \right] = Lesser of \left[\frac{9.13}{24} \right] = 9.13 \text{ in.}$$

$$ACI 318-14 (9.7.6.2.2)$$

Since $s_{req'd} > s_{max} \rightarrow$ use s_{max}

Select $s_{provided} = 8$ in. #4 stirrups with first stirrup located at distance 3 in. from the column face. The distance where the shear is zero is calculated as follows:

$$x = \frac{l}{V_{u,L} + V_{u,R}} \times V_{u,L} = \frac{17.5}{44.67 + 55.78} \times 44.67 = 7.78 \text{ ft} = 93.4 \text{ in.}$$

The distance from support beyond which minimum reinforcement is required is calculated as follows:

$$x_1 = x - \frac{x}{V_u} \times \varphi_v V_c = 7.78 - \frac{7.78}{44.67} \times 24.25 = 3.56 \text{ ft} = 43 \text{ in.}$$

The distance at which no shear reinforcement is required is calculated as follows:

$$x_{2} = x - \frac{x}{V_{u}} \times \frac{\varphi_{v}V_{c}}{2} = 7.78 - \frac{7.78}{44.67} \times \frac{24.25}{2} = 5.67 \text{ ft} = 68 \text{ in.}$$

of stirrups = $\frac{x_{2} - 3 - \frac{c_{1}}{2} - \frac{s_{provided}}{2}}{s_{provided}} + 1 = \frac{68 - 3 - \frac{18}{2} - \frac{8}{2}}{8} + 1 = 7.5 \rightarrow \text{use 8 stirrups}$

All the values on Table 5 are calculated based on the procedure outlined above.

	Table 5 - Re	quired Beam Re	einforcement	for Shear					
Span Location	A _{v,min} /s in²/in	A _{v,req'd} /s in ² /in	Sreq'd in	S _{max} in	Reinforcement Provided				
End Span									
Exterior	0.0117	0.0090	34.28	9.13	8 - #4 @ 8 in*				
Interior	0.0117	0.0225	17.76	9.13	10 - #4 @ 8.6 in				
		Interior S	pan						
Interior	0.0117	0.0158	25.37	9.13	9 - #4 @ 8.6 in				
Minimum transverse rei	nforcement gover	ns	·						

2.7. Column design moments

The unbalanced moment from the slab-beams at the supports of the equivalent frame are distributed to the actual columns above and below the slab-beam in proportion to the relative stiffness of the actual columns. Referring to Fig. 9, the unbalanced moment at joints 1 and 2 are:

Joint 1 = +93.1 ft-kip

Joint 2 = -119 + 74.5 = -44.5 ft-kip

The stiffness and carry-over factors of the actual columns and the distribution of the unbalanced moments to the exterior and interior columns are shown in Fig 9.

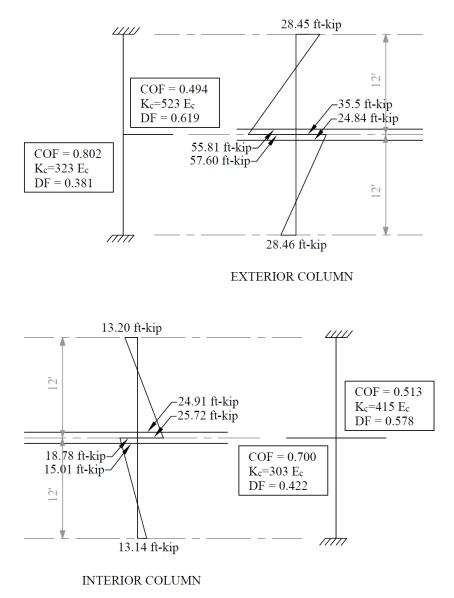


Figure 16 - Column Moments (Unbalanced Moments from Slab-Beam)

In summary:

Design moment in exterior column = 55.81 ft-kip

Design moment in interior column = 24.91 ft-kip

The moments determined above are combined with the factored axial loads (for each story) and factored moments in the transverse direction for design of column sections. A detailed analysis to obtain the moment values at the face of interior, exterior, and corner columns from the unbalanced moment values can be found in the "Two-Way Flat Plate Concrete Floor Slab Design" example.

3. Design of Interior, Edge, and Corner Columns

The design of interior, edge, and corner columns is explained in the "<u>Two-Way Flat Plate Concrete Floor Slab</u> <u>Design</u>" example.

4. Two-Way Slab Shear Strength

Shear strength of the slab in the vicinity of columns/supports includes an evaluation of one-way shear (beam action) and two-way shear (punching) in accordance with ACI 318 Chapter 22.

4.1. One-Way (Beam action) Shear Strength

One-way shear is critical at a distance d from the face of the column. Figure 17 shows the V_u at the critical sections around each column. Since there is no shear reinforcement, the design shear capacity of the section equals to the design shear capacity of the concrete:

$$\varphi V_{n} = \varphi V_{c} + \varphi V_{s} = \varphi V_{c}$$
 ACI 318-14 (Eq. 22.5.1.1)

Where:

$$\varphi V_c = \varphi 2\lambda \sqrt{f'_c} b_w d$$
 ACI 318-14 (Eq. 22.5.5.1)

 $\lambda = 1$ for normal weight concrete

$$\varphi V_c = 0.75 \times 2 \times 1.0 \times \sqrt{4000} \times (22 \times 12 - 14) \times \frac{5}{1000} = 118.59$$
 kips

Because $\varphi V_c > V_u$ at all the critical sections, the slab is <u>*o.k.*</u> in one-way shear.

Shear Diagram (kips)

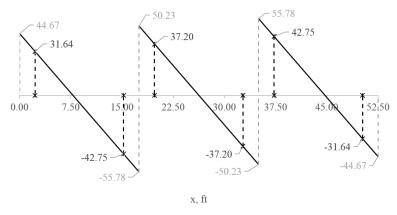
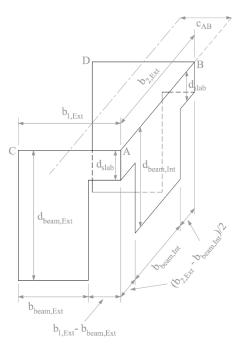


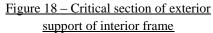
Figure 17 – One-way shear at critical sections (at distance d from the face of the supporting column)

4.2. Two-Way (Punching) Shear Strength

Two-way shear is critical on a rectangular section located at $d_{slab}/2$ away from the face of the column. The factored shear force V_u in the critical section is calculated as the reaction at the centroid of the critical section minus the self-weight and any superimposed surface dead and live load acting within the critical section. The factored unbalanced moment used for shear transfer, M_{unb} , is calculated as the sum of the joint moments to the left and right. Moment of the vertical reaction with respect to the centroid of the critical section is also taken into account.

For the exterior column:


$$V_{u} = 44.67 - 0.340 \left(\frac{20.5 \times 23}{144}\right) = 43.56 \text{ kips}$$
$$M_{unb} = 93.1 - 43.56 \left(\frac{20.5 - 9.09 - 18/2}{12}\right) = 84.37 \text{ ft-kip}$$


For the exterior column in Figure 18, the location of the centroidal axis z-z is:

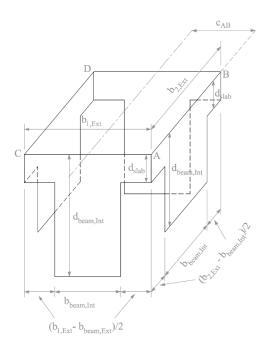
$$c_{AB} = \frac{\text{moment of area of the sides about AB}}{\text{area of the sides}}$$

$$c_{AB} = \frac{2(14 \times 26 \times (6.5 + 14/2) + 6.5 \times 5 \times (6.5/2))}{2 \times (14 \times 26 + 6.5 \times 5) + 14 \times 19 + 2 \times 4.5 \times 5} = 9.09 \text{ in.}$$

$$A_{c} = 2 \times (14 \times 26 + 6.5 \times 5) + 14 \times 19 + 2 \times 4.5 \times 5 = 1104 \text{ in.}^{2}$$

The polar moment J_c of the shear perimeter is:

$$\begin{aligned} \mathbf{J}_{c} &= 2 \left[\frac{b_{boun,EU} d_{boun,EU}^{2}}{12} + \frac{d_{boun,EU}}{12} + \left[b_{boun,EU} d_{boun,EU} \right] \left[\frac{b_{boun,EU}}{2} + \left(b_{1} - b_{boun,EU} \right) - c_{AB} \right]^{2} \right] \\ &+ 2 \left[\frac{\left(b_{1} - b_{boun,EU} d_{abb,EU} + \frac{d_{abb} \left(b_{1} - b_{boun,EU} \right)^{3}}{12} + \left[\left(b_{1} - b_{boun,EU} \right) d_{abb} \right] \left[c_{AB} - \frac{b_{1} - b_{boun,EU}}{2} \right]^{2} \right] \\ &+ \left[b_{boun,EU} d_{boun,EU} + \left(b_{2} - b_{boun,EU} \right) d_{abb} \right] c_{AB}^{2} \\ \mathbf{J}_{c} &= 2 \left[\frac{14 \times 26^{3}}{12} + \frac{26 \times 14^{3}}{12} + \left[14 \times 26 \right] \left[\frac{14}{2} + \left(20.5 - 14 \right) - 9.09 \right]^{2} \right] \\ &+ 2 \left[\frac{\left(20.5 - 14 \right) \times 5^{3}}{12} + \frac{5 \times \left(20.5 - 14 \right)^{3}}{12} + \left[\left(20.5 - 14 \right) \times 5 \right] \right] \left[9.09 - \frac{20.5 - 14}{2} \right]^{2} \right] \\ &+ \left[14 \times 19 + \left(23 - 14 \right) \times 5 \right] \times 9.09^{2} \\ \mathbf{J}_{c} &= 95,338 \ \mathrm{in}^{4} \\ \mathbf{\gamma}_{c} &= 1 - \mathbf{\gamma}_{c} = 1 - 0.614 = 0.386 \\ \mathbf{ACI 318 \cdot 14 \left(Eq. 8.4.4.2.2 \right)} \\ \mathrm{The length of the critical perimeter for the exterior column: \\ \\ \mathbf{b}_{a} &= 2 \times (18 + 5/2) + (18 + 5) = 64 \ \mathrm{in}. \\ \mathbf{v}_{a} &= \frac{\mathbf{V}_{a}}{\mathbf{A}_{c}} + \frac{\mathbf{Y}_{a}\mathbf{M}_{ab}C_{AB}}{\mathbf{J}_{c}} \\ \mathbf{v}_{a} &= \min \left[4\lambda \sqrt{f_{c}} \cdot \left(2 + \frac{4}{\beta} \right) \lambda \sqrt{f_{c}} \cdot \left(\frac{\alpha_{S}d}{b_{O}} + 2 \right) \lambda \sqrt{f_{c}} \right] \\ \mathbf{v}_{c} &= \min \left[4\lambda 1 \times \sqrt{4000} , \left(2 + \frac{4}{1} \right) \times 1 \times \sqrt{4000} , \left(\frac{30 \times 5}{64} + 2 \right) \times 1 \times \sqrt{4000} \right] \\ \mathbf{v}_{c} &= \min \left[253, 379.5, 274.7 \right] \ \mathrm{psi} &= 253 \ \mathrm{psi} \\ \mathbf{OK}. \end{aligned}$$


For the interior column:

$$V_u = 55.78 + 50.23 - 0.340 \left(\frac{23 \times 23}{144}\right) = 104.76 \text{ kips}$$

$$M_{unb} = 167.7 - 153.6 - 104.76(0) = 14.10 \text{ ft-kip}$$

For the interior column in Figure 19, the location of the centroidal axis z-z is:

$$c_{AB} = \frac{b_{1,Int}}{2} = \frac{23}{2} = 11.5 \text{ in.}$$

 $A_c = 4 \times (14 \times 19 + 9 \times 5) = 1244 \text{ in.}^2$

The polar moment J_c of the shear perimeter is:

<u>Figure 19 – Critical section of interior</u> <u>support of interior frame</u>

$$\begin{split} \mathbf{J}_{c} &= 2 \Biggl[\frac{b_{beam,htt}}{12} + \frac{d_{beam,htt}}{12} + \left[b_{beam,htt}}{12} + \left[b_{beam,htt}} \right] \left[\frac{b_{beam,htt}}{2} + \left(\frac{b_{1} - b_{beam,htt}}{2} \right) - c_{AB} \Biggr]^{2} \Biggr] \\ &+ 4 \Biggl[\frac{\left(\frac{b_{1} - b_{beam,htt}}{2} \right) d_{slab,htt}}{12} + \frac{d_{slab} \left(\frac{b_{1} - b_{beam,htt}}{2} \right)^{3}}{12} + \left[\left(\frac{b_{1} - b_{beam,htt}}{2} \right) d_{slab} \Biggr] \left[c_{AB} - \frac{b_{1} - b_{beam,htt}}{2 \times 2} \right]^{2} \Biggr] \\ &+ \left[b_{beam,htt} d_{beam,htt} + \left(b_{2} - b_{beam,htt} \right) d_{slab} \Biggr] c_{AB}^{2} \Biggr] \\ &+ \left[b_{beam,htt} d_{beam,htt} + \left(b_{2} - b_{beam,htt} \right) d_{slab} \Biggr] c_{AB}^{2} \Biggr] \\ &+ 4 \Biggl[\frac{\left(\frac{23 - 14}{2} \right) \times 5^{3}}{12} + \left[14 \times 19 \right] \left[\frac{14}{2} + \left(\frac{23 - 14}{2} \right) - 11.5 \right]^{2} \Biggr] \\ &+ 4 \Biggl[\frac{\left(\frac{23 - 14}{2} \right) \times 5^{3}}{12} + \frac{5 \times \left(\frac{23 - 14}{2} \right)^{3}}{12} + \left[\left(\frac{23 - 14}{2} \right) \times 5 \right] \left[11.5 - \frac{23 - 14}{2 \times 2} \right]^{2} \Biggr] \\ &+ \left[14 \times 19 + (23 - 14) \times 5 \right] \times 11.5^{2} \end{split}$$

$$J_c = 114,993 \text{ in.}^4$$

 $\gamma_{\rm v} = 1 - \gamma_{\rm f} = 1 - 0.600 = 0.400$ <u>ACI 318-14 (Eq. 8.4.4.2.2)</u>

The length of the critical perimeter for the exterior column:

$$\begin{split} \mathbf{b}_{o} &= 4 \times (18+5) = 92 \text{ in.} \\ \mathbf{v}_{u} &= \frac{\mathbf{V}_{u}}{A_{c}} + \frac{\gamma_{v} \mathbf{M}_{unb} c_{AB}}{J_{c}} \\ \mathbf{v}_{u} &= \frac{104.76 \times 1000}{1244} + \frac{0.4 \times 14.10 \times 12 \times 1000 \times 11.5}{114,993} = 91.0 \text{ psi} \\ \mathbf{v}_{c} &= \min \left[4\lambda \sqrt{f_{c}}, \left(2 + \frac{4}{\beta}\right) \lambda \sqrt{f_{c}}, \left(\frac{\alpha_{s}d}{b_{o}} + 2\right) \lambda \sqrt{f_{c}} \right] \\ \mathbf{v}_{c} &= \min \left[4 \times 1 \times \sqrt{4000}, \left(2 + \frac{4}{1}\right) \times 1 \times \sqrt{4000}, \left(\frac{40 \times 5}{92} + 2\right) \times 1 \times \sqrt{4000} \right] \\ \mathbf{v}_{c} &= \min \left[253, 379.5, 274.7 \right] \text{ psi} = 253 \text{ psi} \\ \varphi \mathbf{v}_{c} &= 0.75 \times 253 = 189.7 \text{ psi} > \mathbf{v}_{u} = 91.0 \text{ psi} \\ \hline \end{aligned}$$

5. Two-Way Slab Deflection Control (Serviceability Requirements)

Since the slab thickness was selected based on the minimum slab thickness tables in ACI 318-14, the deflection calculations are not required. However, the calculations of immediate and time-dependent deflections are covered in this section for illustration and comparison with <u>spSlab</u> model results.

5.1. Immediate (Instantaneous) Deflections

The calculation of deflections for two-way slabs is challenging even if linear elastic behavior can be assumed. Elastic analysis for three service load levels (D, $D + L_{sustained}$, $D+L_{Full}$) is used to obtain immediate deflections of the two-way slab in this example. However, other procedures may be used if they result in predictions of deflection in reasonable agreement with the results of comprehensive tests. <u>ACI 318-14 (24.2.3)</u>

The effective moment of inertia (I_e) is used to account for the cracking effect on the flexural stiffness of the slab. I_e for uncracked section ($M_{cr} > M_a$) is equal to I_g . When the section is cracked ($M_{cr} < M_a$), then the following equation should be used:

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] I_{cr} \le I_g \qquad \underline{ACI 318-14 (Eq. 24.2.3.5a)}$$

Where:

 M_a = Maximum moment in member due to service loads at stage deflection is calculated.

The values of the maximum moments for the three service load levels are calculated from structural analysis as shown previously in this document. These moments are shown in Figure 20.

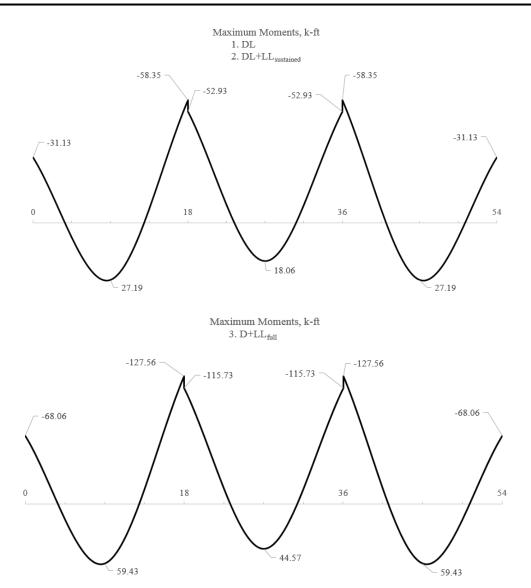


Figure 20 - Maximum Moments for the Three Service Load Levels

For positive moment (midspan) section of the exterior span:

 M_{cr} = Cracking moment.

$$M_{cr} = \frac{f_r I_g}{y_t} = \frac{474.3 \times 25395}{5} \times \frac{1}{12 \times 1000} = 63.14 \text{ ft-kips}$$
 ACI 318-14 (Eq. 24.2.3.5b)

 f_r = Modulus of rapture of concrete.

$$f_r = 7.5\lambda \sqrt{f_c} = 7.5 \times 1.0 \times \sqrt{4000} = 474.3 \text{ psi}$$
 ACI 318-14 (Eq. 19.2.3.1)

 I_g = Moment of inertia of the gross uncracked concrete section.

 $I_g = 25395 \text{ in.}^2 \text{ for T-section (see Figure 21)}$

 y_t = Distance from centroidal axis of gross section, neglecting reinforcement, to tension face, in.

 $y_{t} = 15.9$ in. (see Figure 21)

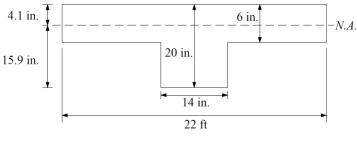


Figure $21 - I_{q}$ calculations for slab section near support

 I_{cr} = Moment of inertia of the cracked section transformed to concrete. <u>PCA Notes on ACI 318-11 (9.5.2.2)</u> As calculated previously, the positive reinforcement for the end span frame strip is 22 #4 bars located at 1.0 in. along the slab section from the bottom of the slab and 4 #4 bars located at 1.75 in. along the beam section from the bottom of the beam. <u>Five of the slab section bars are not continuous and will be excluded from the</u> <u>calculation of I_{cr} </u>. Figure 22 shows all the parameters needed to calculate the moment of inertia of the cracked section transformed to concrete at midspan.

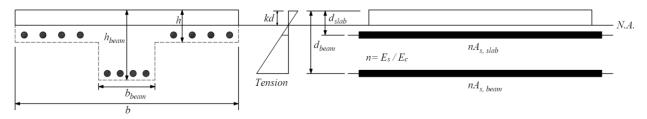


Figure 22 - Cracked Transformed Section (positive moment section)

 E_{cs} = Modulus of elasticity of slab concrete.

$$E_{cs} = w_c^{1.5} 33\sqrt{f_c'} = 150^{1.5} \times 33 \times \sqrt{4000} = 3834 \times 10^3 \text{ psi}$$

$$n = \frac{E_s}{E_{cs}} = \frac{29000000}{3834000} = 7.56$$

$$PCA \text{ Notes on ACI 318-11 (Table 10-2)}$$

$$a = \frac{b}{2} = \frac{22 \times 12}{2} = 132 \text{ in.}$$

$$b = n A_{s,beam} + n A_{s,slab} = 7.56 \times (4 \times 0.20) + 7.56 \times (17 \times 0.20) = 31.77 \text{ in.}^2$$

$$c = -1 \times (n A_{s,beam} d_{s,beam} + n A_{s,slab} d_{s,slab}) = -1 \times (7.56 \times (4 \times 0.20) \times 18.25 + 7.56 \times (17 \times 0.20) \times 5.0) = -239 \text{ in.}^3$$

$$kd = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-31.77 \pm \sqrt{31.77^2 - 4 \times 132 \times -239}}{2 \times 132} = 3.999 \text{ in.}$$

$$I_{cr} = \frac{b(kd)^{3}}{3} + nA_{s,slab}(d_{slab} - kd)^{2} + nA_{s,beam}(d_{beam} - kd)^{2}$$

$$I_{cr} = \frac{22 \times 12 \times (3.999)^3}{3} + 7.56 \times (17 \times 0.20)(5 - 3.999)^2 + 7.56 \times (4 \times 0.20)(18.25 - 3.999)^2 = 2282 \text{ in.}^4$$

For negative moment section (near the interior support of the end span):

The negative reinforcement for the end span frame strip near the interior support is 27 #4 bars located at 1.0 in. along the section from the top of the slab.

$$M_{cr} = \frac{f_r I_g}{y_t} = \frac{474.3 \times 9333}{10.0} \times \frac{1}{12 \times 1000} = 36.89 \text{ ft-kips}$$

$$f_r = 7.5\lambda \sqrt{f_c} = 7.5 \times 1.0 \times \sqrt{4000} = 474.3 \text{ psi}$$

$$I_g = 9333 \text{ in.}^2$$

$$ACI 318-14 (Eq. 24.2.3.5b)$$

 $y_t = 10.0$ in.

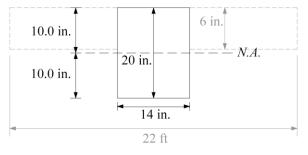


Figure $23 - I_g$ calculations for slab section near support

$$E_{cs} = w_c^{1.5} 33\sqrt{f_c'} = 150^{1.5} \times 33 \times \sqrt{4000} = 3834 \times 10^3 \text{ psi}$$

$$n = \frac{E_s}{E_{cs}} = \frac{29000000}{3834000} = 7.56$$

$$B = \frac{b_{beam}}{nA_{s, total}} = \frac{14}{7.56 \times (27 \times 0.20)} = 0.34 \text{ in.}^{-1}$$

$$kd = \frac{\sqrt{2dB+1}-1}{B} = \frac{\sqrt{2 \times 19 \times 0.34+1}-1}{0.34} = 8.03$$
 in.

ACI 318-14 (19.2.2.1.a)

PCA Notes on ACI 318-11 (Table 10-2)

PCA Notes on ACI 318-11 (Table 10-2)

PCA Notes on ACI 318-11 (Table 10-2)

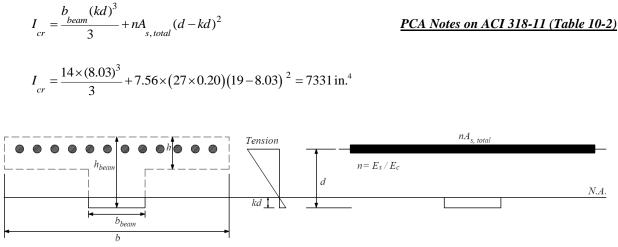


Figure 24 – Cracked Transformed Section (interior negative moment section for end span)

The effective moment of inertia procedure described in the Code is considered sufficiently accurate to estimate deflections. The effective moment of inertia, I_e , was developed to provide a transition between the upper and lower bounds of I_g and I_{cr} as a function of the ratio M_{cr}/M_a . For conventionally reinforced (nonprestressed) members, the effective moment of inertia, I_e , shall be calculated by Eq. (24.2.3.5a) unless obtained by a more comprehensive analysis.

I_e shall be permitted to be taken as the value obtained from Eq. (24.2.3.5a) at midspan for simple and continuous spans, and at the support for cantilevers. <u>ACI 318-14 (24.2.3.7)</u>

For continuous one-way slabs and beams. I_e shall be permitted to be taken as the average of values obtained from Eq. (24.2.3.5a) for the critical positive and negative moment sections. <u>ACI 318-14 (24.2.3.6)</u>

For the exterior span (span with one end continuous) with service load level (D+LLfull):

$$I_{e}^{-} = \left(\frac{M_{cr}}{M_{a}}\right)^{3} I_{g} + \left[1 - \left(\frac{M_{cr}}{M_{a}}\right)^{3}\right] I_{cr} \text{, since } M_{cr} = 36.89 \text{ ft-kips} < M_{a} = 127.56 \text{ ft-kips}$$

$$ACI 318-14 (24.2.3.5a)$$

Where I_e^- is the effective moment of inertia for the critical negative moment section (near the support).

$$I_e^- = \left(\frac{36.89}{127.56}\right)^3 \times 9333 + \left[1 - \left(\frac{36.89}{127.56}\right)^3\right] \times 7331 = 7380 \text{ in.}^4$$

$$I_e^+ = I_g^- = 25395 \text{ in.}^4$$
, since $M_{cr}^- = 63.14 \text{ ft-kips} > M_a^- = 59.43 \text{ ft-kips}$

Where I_{e^+} is the effective moment of inertia for the critical positive moment section (midspan).

Since midspan stiffness (including the effect of cracking) has a dominant effect on deflections, midspan section is heavily represented in calculation of I_e and this is considered satisfactory in approximate deflection calculations. The averaged effective moment of inertia ($I_{e,avg}$) is given by:

$$I_{e,avg} = 0.85 I_e^+ + 0.15 I_e^- \text{ for end span}$$

$$PCA \text{ Notes on ACI 318-11 (9.5.2.4(1))}$$

$$I_{e,avg} = 0.85 (25395) + 0.15 (7380) = 22693 \text{ in.}^4$$

Where:

 I_e^- = The effective moment of inertia for the critical negative moment section near the support.

 I_e^+ = The effective moment of inertia for the critical positive moment section (midspan).

For the interior span (span with both ends continuous) with service load level $(D+LL_{full})$:

$$I_{e}^{-} = \left(\frac{M_{cr}}{M_{a}}\right)^{3} I_{g} + \left[1 - \left(\frac{M_{cr}}{M_{a}}\right)^{3}\right] I_{cr} \text{, since } M_{cr} = 36.89 \text{ ft-kips} < M_{a} = 115.73 \text{ ft-kips}$$

ACI 318-14 (24.2.3.5a)

$$I_e^- = \left(\frac{36.89}{115.73}\right)^3 \times 9333 + \left[1 - \left(\frac{36.89}{115.73}\right)^3\right] \times 7331 = 7396 \text{ in.}^4$$

$$I_e^+ = I_g^- = 25395$$
 in.⁴ , since $M_{cr}^- = 63.14$ ft-kips $> M_a^- = 44.57$ ft-kips

The averaged effective moment of inertia $(I_{e,avg})$ is given by:

$$I_{e,avg} = 0.70 I_e^+ + 0.15 \left(I_{e,l}^- + I_{e,r}^- \right) \text{ for interior span} \qquad \underline{PCA \ Notes \ on \ ACI \ 318-11 \ (9.5.2.4(2))}$$

$$I_{e,avg} = 0.70 \left(25395 \right) + 0.15 \left(7396 + 7396 \right) = 19995 \text{ in.}^4$$

Where:

 $I_{e,l}^{-}$ = The effective moment of inertia for the critical negative moment section near the left support.

 $I_{e,R}^{-}$ = The effective moment of inertia for the critical negative moment section near the right support.

Table 6 provides a summary of the required parameters and calculated values needed for deflections for exterior and interior equivalent frame. It also provides a summary of the same values for column strip and middle strip to facilitate calculation of panel deflection.

			Tal	ole 6 – Av	eraged E	ffective Mo	oment of	Inertia (Calculatio	ns			
						For Fram	e Strip						
-	I _g , I _{cr} ,				M _a , ft-kip		M _{cr} ,	I_e , in. ⁴			$I_{e,avg}$, in. ⁴		
Span	zone	in. ⁴	in. ⁴	D	D + LL _{Sus}	D + L _{full}	k-ft	D	D + LL _{Sus}	D + L _{full}	D	D + LL _{Sus}	D + L _{full}
	Left	9333	7147	-30.61	-30.61	-66.92	36.89	9333	9333	7513			
Ext	Midspan	25395	2282	27.19	27.19	59.43	63.14	25395	25395	25395	22761	22761	22693
	Right	9333	7331	-58.35	-58.35	-127.56	36.89	7837	7837	7380			
	Left	9333	7331	-52.93	-52.93	-115.73	36.89	8009	8009	7396			
Int	Mid	25395	1553	18.06	18.06	44.57	63.14	25395	25395	25395	20179	20179	19995
	Right	9333	7331	-52.93	-52.93	-115.73	36.89	8009	8009	7396			

Deflections in two-way slab systems shall be calculated taking into account size and shape of the panel, conditions of support, and nature of restraints at the panel edges. For immediate deflections two-way slab systems the midpanel deflection is computed as the sum of deflection at midspan of the column strip or column line in one direction (Δ_{cx} or Δ_{cy}) and deflection at midspan of the middle strip in the orthogonal direction (Δ_{mx} or Δ_{my}). Figure 25 shows the deflection computation for a rectangular panel. The average Δ for panels that have different properties in the two direction is calculated as follows:

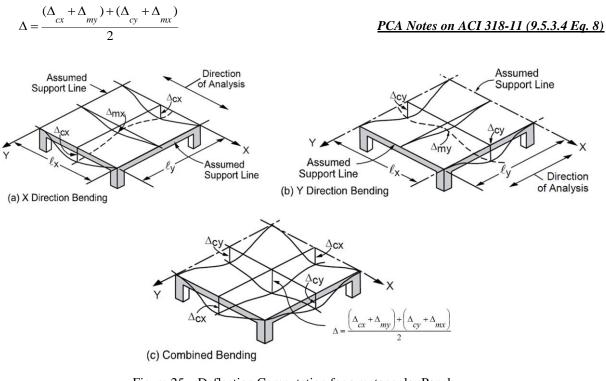


Figure 25 – Deflection Computation for a rectangular Panel

To calculate each term of the previous equation, the following procedure should be used. Figure 26 shows the procedure of calculating the term Δ_{cx} . same procedure can be used to find the other terms.

36

Where LDF_c is the load distribution factor for the column strip. The load distribution factor for the column strip can be found from the following equation:

$$\Delta_{1} = \frac{(1854)(17.5 - 18/12)^{4}(12)^{3}}{(12)^{3}} = 0.0063 \text{ in}$$

 $\Delta_{c,fixed} = LDF_c \times \Delta_{frame,fixed} \times \left(\frac{I_{frame}}{I_c}\right)_c$

$$I_{frame, averaged}$$
 = The averaged effective moment of inertia ($I_{e,avg}$) for

$$f_{rame,averaged}$$
 = The averaged effective moment of inertia ($I_{e,avg}$) for

$$E_c = w_c^{1.5} 33\sqrt{f_c'} = 150^{1.5} \times 33 \times \sqrt{4000} = 3834 \times 10^3 \text{ psi}$$

w = slab weight + beam weight =
$$\left(\frac{150 \times 6}{12} + \frac{150 \times (20 - 6) \times 14}{22 \times 144}\right)(22) = 1854 \text{ lb/ft}$$

$$\Delta_{frame, fixed} = \frac{wl^4}{384E_c I_{frame, averaged}}$$

Where:

PCA Notes on ACI 318-11 (9.5.3.4 Eq. 10)

 $\Delta \theta_{c,R} = \theta_{c,R} \left(\frac{l}{8}\right) \left(\frac{I_g}{I_e}\right)_{column} \qquad \qquad \Delta \theta_{c,L} = \theta_{c,L} \left(\frac{l}{8}\right) \left(\frac{I_g}{I_e}\right)_{column}$

Figure 26 – Δ_{cx} calculation procedure

For exterior span - service dead load case:

$$LDF_{c} = \frac{LDF^{+} + \frac{LDF_{l}^{-} + LDF_{R}^{-}}{2}}{2}$$

$$\theta_{c,R} = \frac{(M_{net,R})_{column}}{K_{ec}}$$

$$\theta_{c,L} = \frac{(M_{ec,R})_{column}}{K_{ec}}$$

 $\Delta_{cx} = \Delta_{cx, fixed} + \Delta \theta_{cx,R} + \Delta \theta_{cx,L}$

or the frame strip for service dead load case from Table 6 -22761 in ⁴

$$\Delta_{frame, fixed} = \frac{(1854)(17.5 - 18/12)^4 (12)^3}{384(3834 \times 10^3)(22761)} = 0.0063 \text{ in.}$$

$$\Delta_{frame,fixed}$$
 = Deflection of column strip assuing fixed end condition.

ACI 318-14 (19.2.2.1.a)

Structure oint CONCRETE SOFTWARE SOLUTIONS

 $\Delta_{c,fixed} = LDF_c \times \Delta_{frame,fixed} \times \left(\frac{I_{frame}}{I_c}\right)$

$$LDF_{c} = \frac{LDF^{+} + \frac{LDF_{l}^{-} + LDF_{R}^{-}}{2}}{2}$$

And the load distribution factor for the middle strip can be found from the following equation:

$$LDF_m = 1 - LDF_c$$

For the end span, LDF for exterior negative region (LDF_L^-) , interior negative region (LDF_R^-) , and positive region (LDF_L^+) are 0.75, 0.67, and 0.67, respectively (From Table 2 of this document). Thus, the load distribution factor for the column strip for the end span is given by:

$$LDF_{c} = \frac{0.67 + \frac{0.75 + 0.67}{2}}{2} = 0.690$$

 $I_{c,g}$ = The gross moment of inertia (I_g) for the column strip (for T section) = 20040 in.⁴ $I_{frame,g}$ = The gross moment of inertia (I_g) for the frame strip (for T section) = 25395 in.⁴

$$\Delta_{c,fixed} = 0.690 \times 0.0063 \times \frac{25395}{20040} = 0.0055 \text{ in.}$$

$$\theta_{c,L} = \frac{(M_{net,L})_{frame}}{K_{ec}}$$
PCA Notes on ACI 318-11 (9.5.3.4 Eq. 12)

Where:

 $\theta_{c,L}$ = Rotation of the span left support.

 $(M_{net,L})_{frame} = 31.13$ ft-kips = Net frame strip negative moment of the left support.

 K_{ec} = effective column stiffness for exterior column.

= 764 x E_c = 2929 x 10⁶ in.-lb (calculated previously).

$$\theta_{c,L} = \frac{31.13 \times 12 \times 1000}{2929 \times 10^6} = 0.00012 \text{ rad}$$
$$\Delta \theta_{c,L} = \theta_{c,L} \left(\frac{l}{8}\right) \left(\frac{I_g}{I_e}\right)_{frame}$$

PCA Notes on ACI 318-11 (9.5.3.4 Eq. 14)

Where:

 $\Delta \theta_{c,L}$ = Midspan deflection due to rotation of left support.

 $\left(\frac{I_s}{I_e}\right)_{frame}$ = Gross-to-effective moment of inertia ratio for frame strip.

$$\Delta \theta_{c,L} = 0.00012 \times \frac{(17.5 - 18/12) \times 12}{8} \times \frac{25395}{22761} = 0.0033 \text{ in.}$$

$$\theta_{c,R} = \frac{(M_{net,R})_{frame}}{K_{ec}} = \frac{(58.35 - 52.93) \times 12 \times 1000}{2419 \times 10^6} = 0.00003 \text{ rad}$$

Where

 $\theta_{c,R}$ = Rotation of the end span right support.

 $(M_{net,R})_{frame}$ = Net frame strip negative moment of the right support.

 K_{ec} = effective column stiffness for interior column. = 631 x E_c = 2419 x 10⁶ in.-lb (calculated previously).

$$\Delta \theta_{c,R} = \theta_{c,R} \left(\frac{l}{8} \right) \left(\frac{I_g}{I_e} \right)_{frame} = 0.00003 \times \frac{(17.5 - 18/12) \times 12}{8} \times \frac{25395}{22761} = 0.00072 \text{ in.}$$

Where:

 $\Delta \theta_{c,R}$ = Midspan delfection due to rotation of right support.

$$\Delta_{cx} = \Delta_{cx, fixed} + \Delta \theta_{cx,R} + \Delta \theta_{cx,L}$$
PCA Notes on ACI 318-11 (9.5.3.4 Eq. 9)

 $\Delta_{CX} = 0.0055 + 0.0033 + 0.00072 = 0.009$ in.

Following the same procedure, Δ_{mx} can be calculated for the middle strip. This procedure is repeated for the equivalent frame in the orthogonal direction to obtain Δ_{cy} , and Δ_{my} for the end and middle spans for the other load levels ($D+LL_{sus}$ and $D+LL_{full}$).

Assuming square panel, $\Delta_{cx} = \Delta_{cy} = 0.009$ in. and $\Delta_{mx} = \Delta_{my} = 0.021$ in.

The average Δ for the corner panel is calculated as follows:

$$\Delta = \frac{(\Delta_{cx} + \Delta_{my}) + (\Delta_{cy} + \Delta_{mx})}{2} = (\Delta_{cx} + \Delta_{my}) = (\Delta_{cy} + \Delta_{mx}) = 0.009 + 0.021 = 0.030 \text{ in.}$$

Table 7 - Instantaneous Deflections

Column Strip

					D			
Span	LDF	$\Delta_{ ext{frame-fixed}},$ in	$\Delta_{ ext{c-fixed}},$ in	θ _{c1} , rad	θ _{c2} , rad	Δθ _{c1} , in	$\Delta \theta_{c2},$ in	$\Delta_{cx},$ in
Ext	0.69	0.0063	0.0055	0.00012	0.00003	0.0033	0.0007	0.009
Int	0.67	0.0071	0.0060	0.00003	0.00003	-0.0008	-0.0008	0.004

				D			
LDF	$\Delta_{ ext{frame-fixed}},$ in	$\Delta_{ ext{m-fixed}},$ in	θ _{m1} , rad	θ _{m2} , rad	$\Delta \theta_{m1},$ in	$\Delta \theta_{m2},$ in	$\Delta_{mx},$ in
0.31	0.0063	0.0172	0.00012	0.00003	0.0033	0.0007	0.021
0.33	0.0071	0.0207	0.00003	0.00003	-0.0008	-0.0008	0.019

Middle Strip

				J	D+LL _{sus}			
Span	LDF	$\Delta_{ ext{frame-fixed}},$ in	$\Delta_{ ext{c-fixed}},$ in	θ _{c1} , rad	θ _{c2} , rad	Δθ _{c1} , in	Δθ _{c2} , in	$\Delta_{cx},$ in
Ext	0.69	0.0063	0.0055	0.00012	0.00003	0.0033	0.0007	0.009
Int	0.67	0.0071	0.0060	0.00003	0.00003	-0.0008	-0.0008	0.004

				D+LL _{sus}			
LDF	Δ _{frame-fixed} , in	Δ _{m-fixed} , in	θ _{m1} , rad	θ _{m2} , rad	Δθ _{m1} , in	$\Delta \theta_{m2},$ in	$\Delta_{mx},$ in
0.31	0.00627	0.01724	0.00012	0.00003	0.00330	0.00072	0.021
0.33	0.00707	0.02069	0.00003	0.00003	-0.00081	-0.00081	0.019

				J	D+LL _{full}			
Span	LDF	$\Delta_{ ext{frame-fixed}},$ in	$\Delta_{ ext{c-fixed}},$ in	θ _{c1} , rad	θ _{c2} , rad	Δθ _{c1} , in	Δθ _{c2} , in	$\Delta_{\rm ex},$ in
Ext	0.69	0.0137	0.0120	0.00027	0.00006	0.0072	0.0016	0.021
Int	0.67	0.0156	0.0132	0.00006	0.00006	-0.0018	-0.0018	0.010

				D+LL _{full}			
LDF	$\Delta_{ ext{frame-fixed}},$ in	$\Delta_{ ext{m-fixed}},$ in	θ _{m1} , rad	θ _{m2} , rad	Δθ _{m1} , in	Δθ _{m2} , in	Δ _{mx} , in
0.31	0.01374	0.03780	0.00027	0.00006	0.00724	0.00158	0.047
0.33	0.01559	0.04566	0.00006	0.00006	-0.00179	-0.00179	0.042

		LL
Span	LDF	Δ _{cx} , in
Ext	0.69	0.011
Int	0.67	0.005

	LL
LDF	$\Delta_{mx},$ in
0.31	0.025
0.33	0.023

5.2. Time-Dependent (Long-Term) Deflections (Δlt)

The additional time-dependent (long-term) deflection resulting from creep and shrinkage (Δ_{cs}) may be estimated as follows:

$$\Delta_{cs} = \lambda_{\Lambda} \times (\Delta_{sust})_{Inst}$$
PCA Notes on ACI 318-11 (9.5.2.5 Eq. 4)

The total time-dependent (long-term) deflection is calculated as:

$$(\Delta_{total})_{lt} = (\Delta_{sust})_{lnst} \times (1 + \lambda_{\Delta}) + [(\Delta_{total})_{lnst} - (\Delta_{sust})_{lnst}]$$

$$CSA A23.3-04 (N9.8.2.5)$$

Where:

 $(\Delta_{sust})_{Inst}$ = Immediate (instantaneous) deflection due to sustained load, in.

$$\lambda_{\Delta} = \frac{\xi}{1+50\rho'} \underline{ACI 318-14 (24.2.4.1.1)}$$

 $(\Delta_{total})_{lt}$ = Time-dependent (long-term) total delfection, in.

 $(\Delta_{total})_{Inst}$ = Total immediate (instantaneous) deflection, in.

For the exterior span

 $\xi = 2$, consider the sustained load duration to be 60 months or more. ACI 318-14 (Table 24.2.4.1.3)

 $\rho' = 0$, conservatively.

$$\lambda_{\Delta} = \frac{2}{1+50\times0} = 2$$

 $\Delta_{cs} = 2 \times 0.009 = 0.019$ in.

$$(\Delta_{total})_{lt} = 0.009 \times (1+2) + (0.021 - 0.009) = 0.040$$
 in.

Table 8 shows long-term deflections for the exterior and interior spans for the analysis in the x-direction, for column and middle strips.

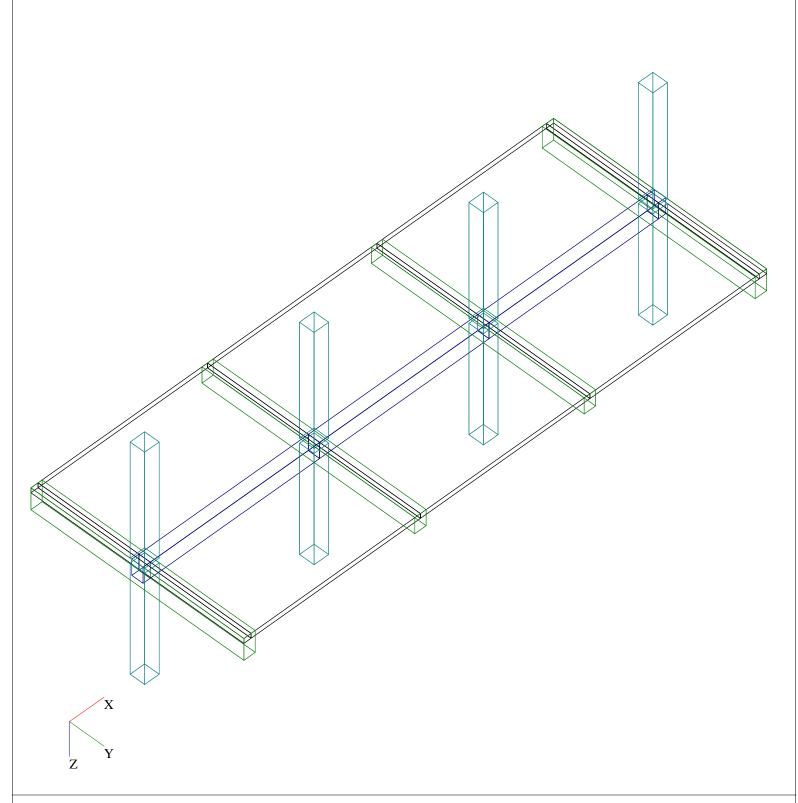


		Table 8 - Long	g-Term Deflec	ctions	
		Colu	ımn Strip		
Span	$(\Delta_{\text{sust}})_{\text{Inst}}$, in	λ_{Δ}	$\Delta_{\rm cs}$, in	$(\Delta_{total})_{Inst}$, in	$(\Delta_{ ext{total}})_{ ext{lt}}, ext{in}$
Exterior	0.009	2.000	0.019	0.021	0.040
Interior	0.004	2.000	0.009	0.010	0.018
		Mid	ldle Strip	·	
Exterior	0.021	2.000	0.043	0.047	0.089
Interior	0.019	2.000	0.038	0.042	0.080

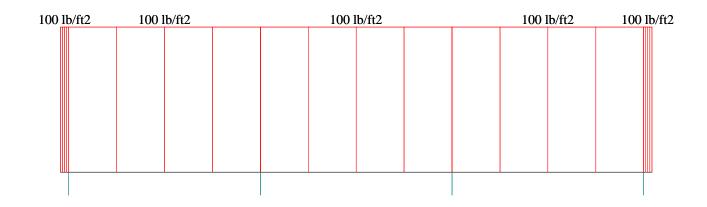
6. spSlab Software Program Model Solution

<u>spSlab</u> program utilizes the Equivalent Frame Method described and illustrated in details here for modeling, analysis and design of two-way concrete floor slab systems. <u>spSlab</u> uses the exact geometry and boundary conditions provided as input to perform an elastic stiffness (matrix) analysis of the equivalent frame taking into account the torsional stiffness of the slabs framing into the column. It also takes into account the complications introduced by a large number of parameters such as vertical and torsional stiffness of transverse beams, the stiffening effect of drop panels, column capitals, and effective contribution of columns above and below the floor slab using the of equivalent column concept (*ACI 318-14 (R8.11.4*)).

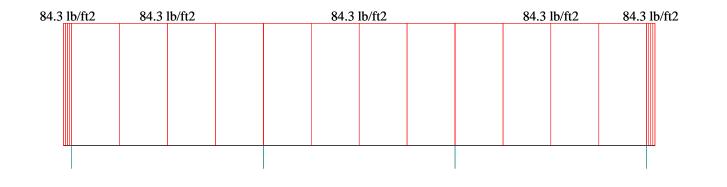
<u>spSlab</u> Program models the equivalent frame as a design strip. The design strip is, then, separated by <u>spSlab</u> into column and middle strips. The program calculates the internal forces (Shear Force & Bending Moment), moment and shear capacity vs. demand diagrams for column and middle strips, instantaneous and long-term deflection results, and required flexural reinforcement for column and middle strips. The graphical and text results will be provided from the <u>spSlab</u> model in a future revision to this document. For a sample output refer to "<u>Two-Way</u> Flat Plate Concrete Floor Slab Design" example.

File: C:\...\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Project: Two-Way Slab With Beams Spanning Between Supports


Frame: Interior Frame

Engineer: SP


Code: ACI 318-14

Date: 03/31/17

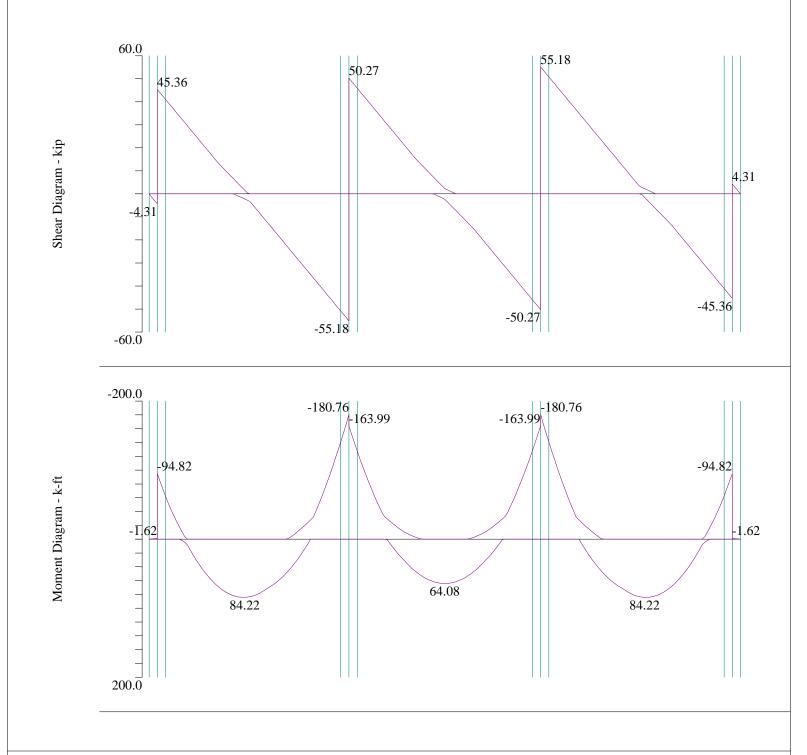
Time: 14:47:17

CASE/PATTERN:: Live/All

spSlab v5.00. Licensed to: StructurePoint. License ID: 66184-1055152-4-2C6B6-2C6B6

File: C:\...\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Project: Two-Way Slab With Beams Spanning Between Supports


Frame: Interior Frame

Engineer: SP

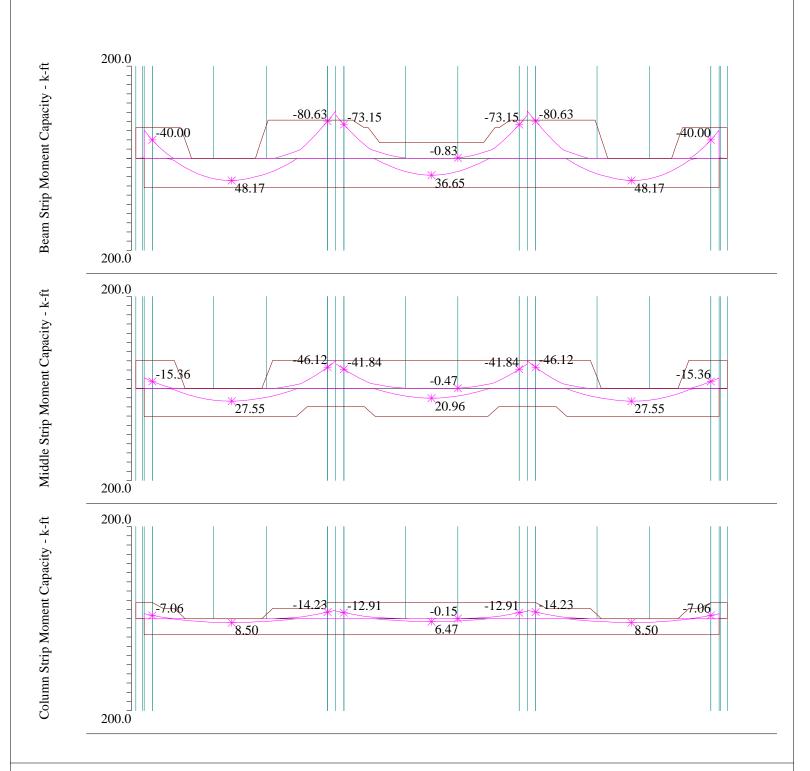
Code: ACI 318-14

Date: 03/31/17

Time: 14:48:17

File: C:\...\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Project: Two-Way Slab With Beams Spanning Between Supports


Frame: Interior Frame

Engineer: SP

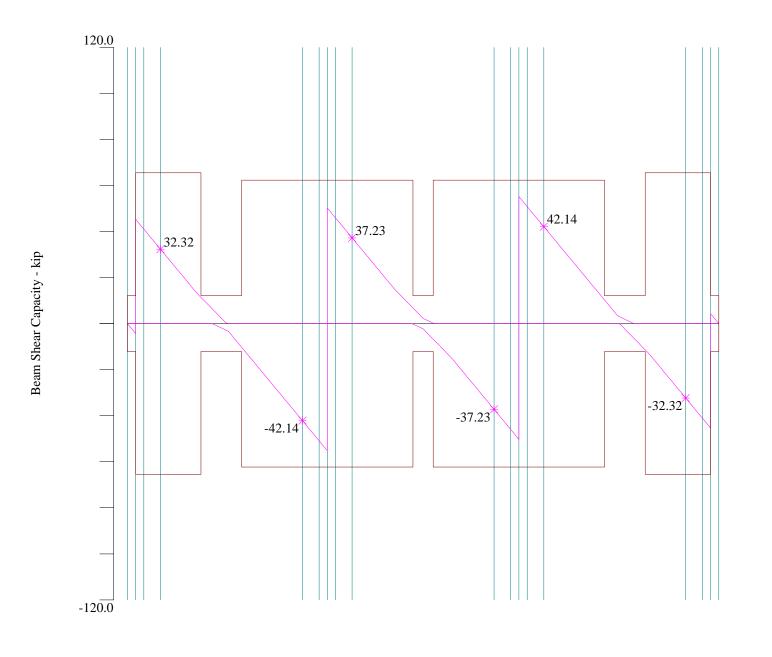
Code: ACI 318-14

Date: 03/31/17

Time: 14:49:25

File: C:\...\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Project: Two-Way Slab With Beams Spanning Between Supports


Frame: Interior Frame

Engineer: SP

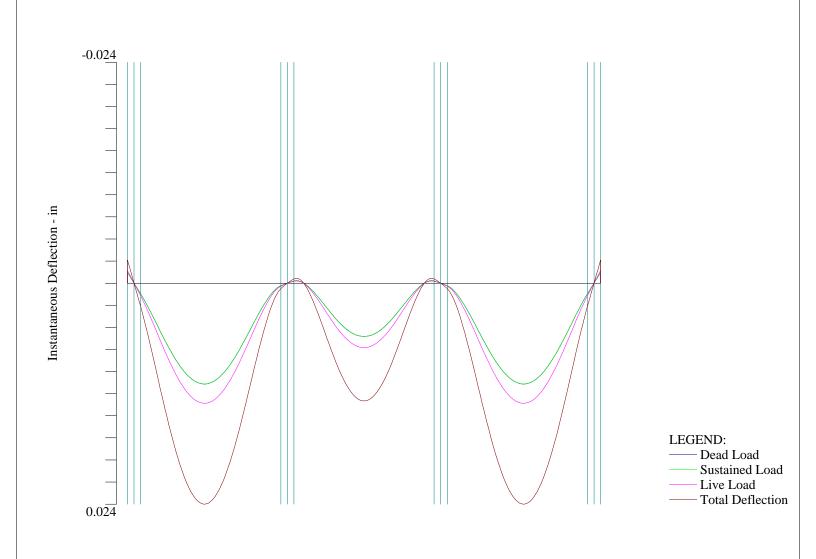
Code: ACI 318-14

Date: 03/31/17

Time: 14:51:28

File: C:\...\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Project: Two-Way Slab With Beams Spanning Between Supports


Frame: Interior Frame

Engineer: SP

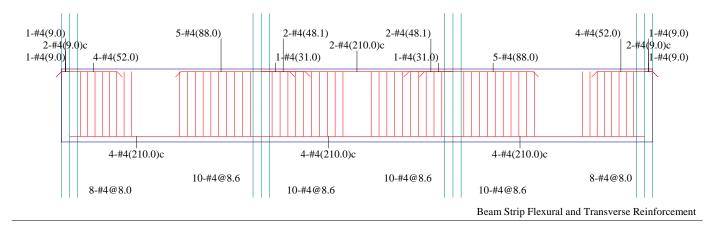
Code: ACI 318-14

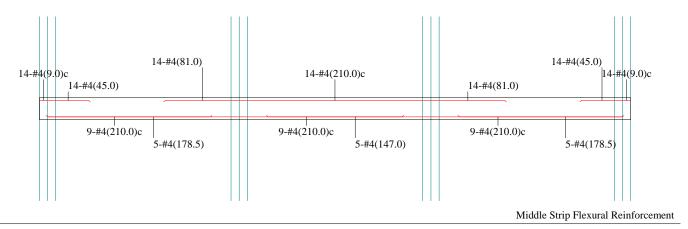
Date: 03/31/17

Time: 14:54:08

File: C:\...\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Project: Two-Way Slab With Beams Spanning Between Supports


Frame: Interior Frame


Engineer: SP

Code: ACI 318-14

Date: 03/31/17

Time: 14:54:54

3-#4(21.0) 8-#4(9.0)c 5-#4(45.0)	3-#4(21.0) 5-#4(81.0)	8-#4(210.0)c	3-#4(21.0) 5-#4(81.0)	3-#4(21.0) 8-#4(9.0)c 5-#4(45.0)
8-#4(210.	0)c	8-#4(210.0)c	8-#4(210.0)c	n Strip Flexural Reinforcement

File: C:\TSDA\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Project: Two-Way Slab With Beams Spanning Between Supports

Frame: Interior Frame

Engineer: SP

Code: ACI 318-14

Date: 03/31/17

Time: 14:56:22

Page 1

	000000 0 0 00 00 00
	00000 00000 00 00 00 00 00 00 00 00 00 0
	000000 00000 000 00 00 00 00 00 00 00 00
	00 00 00 00 00 00 00
	0 00 00 00 00 00 00
	spSlab v5.00 (TM) A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams, One-way and Two-way Slab Systems Copyright © 2003-2015, STRUCTUREPOINT, LLC All rights reserved
	Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spSlab program. Although STRUCTUREPOINT has endeavored to produce spSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spSlab program.
1] INE	T ECHO
File Pro: Fram Engi Code Rein Mode Num Floc Live Mini Circo Defi In r Long 0% c Comp Defa User	<pre>====================================</pre>
One- Dist Bean Long Trar	ay shear in drop panel NOT selected. ibution of shear to strips NOT selected. T-section design NOT selected. tudinal beam contribution in negative reinforcement design over support NOT selected. verse beam contribution in negative reinforcement design over support NOT selected. Properties
One- Dist Bean Long Trar	ibution of shear to strips NOT selected. T-section design NOT selected. tudinal beam contribution in negative reinforcement design over support NOT selected. verse beam contribution in negative reinforcement design over support NOT selected. Properties =========
One- Dist Bean Long Trar ateria	<pre>ibution of shear to strips NOT selected. T-section design NOT selected. tudinal beam contribution in negative reinforcement design over support NOT selected. verse beam contribution in negative reinforcement design over support NOT selected. Properties ====================================</pre>
One- Dist Bean Long Trar	<pre>ibution of shear to strips NOT selected. T-section design NOT selected. tudinal beam contribution in negative reinforcement design over support NOT selected. verse beam contribution in negative reinforcement design over support NOT selected. Properties ====================================</pre>
One- Dist Beam Long Tran ateria ====== wc f'c Ec	<pre>ibution of shear to strips NOT selected. T-section design NOT selected. tudinal beam contribution in negative reinforcement design over support NOT selected. verse beam contribution in negative reinforcement design over support NOT selected. Properties ====================================</pre>
One- Dist Bean Long Tran Materia ************************************	<pre>ibution of shear to strips NOT selected. T-section design NOT selected. tudinal beam contribution in negative reinforcement design over support NOT selected. verse beam contribution in negative reinforcement design over support NOT selected. Properties ====================================</pre>
One- Dist Bean Long Tran ateria ====== wc f'c Ec fr fy fyt Es einfon ======	<pre>ibution of shear to strips NOT selected. T-section design NOT selected. tudinal beam contribution in negative reinforcement design over support NOT selected. verse beam contribution in negative reinforcement design over support NOT selected. Properties ====================================</pre>
One- Dist Bean Long Tran ateria ====== wc f'c Ec fr fy fyt Es einfon	<pre>ibution of shear to strips NOT selected. T-section design NOT selected. tudinal beam contribution in negative reinforcement design over support NOT selected. verse beam contribution in negative reinforcement design over support NOT selected. Properties ====================================</pre>

Size	DD	AD	WD	Size	DD	AD	WD
#3	0.38	0.11	0.38	#4	0.50	0.20	0.67
#5	0.63	0.31	1.04	#6	0.75	0.44	1.50
#7	0.88	0.60	2.04	#8	1.00	0.79	2.67
#9	1.13	1.00	3.40	#10	1.27	1.27	4.30

spSlab v5.0)0 © Structu	rePoint						03-31-2017, 02:57:01 PM
Licensed to	: Structure	Point, Li	cense ID:	66184-105	5152-4-2	C6B6-2C6B6		
C:\TSDA\TSI	DA-spSlab-Tw	o-Way Sla	b with Bea	ams Spanni	ng Betwe	en Supports	.slb	Page 2
#11				14 1.6	59 2.	25 7.65		
#18	2.26 4	.00 13	.60					
Span Data								
========								
Slabs								
Inite: I	1, wL, wR,	т.Эт. т.Эр	(f+): + 1	umin (in)				
Span Loc		t	(10), 0, 1 wL	wR	L2L	L2R	Hmin	
1 Int	0.750	6.00	11.000	11.000	22.000	22.000	LC *i	
2 Int	17.500	6.00	11.000	11.000	22.000	22.000	5.81	
3 Int	17.500	6.00	11.000	11.000	22.000	22.000	5.79	
4 Int	17.500	6.00	11.000	11.000	22.000	22.000	5.81	
5 Int	0.750	6.00	11.000	11.000	22.000	22.000	RC *i	
NOTES:								
	ion check re	muired fo	r nanele s	where code		od Umin for	two way construction	doesn't apply due to:

Deflection check required for panels where code-specified Hmin for two-way construction doesn't apply due to: *i - cantilever end span (LC, RC) support condition

Ribs and Longitudinal Beams

Inits: b h Sp (in)

UIII LS.	υ,	ш,	ъp	(111)	
				Pibe	

UNILS.	b, II, Sp	(III) Ribs			Beams	
Span	b	h	Sp	b	h	Offset
1	0.00	0.00	0.00	14.00	20.00	0.00
2	0.00	0.00	0.00	14.00	20.00	0.00
3	0.00	0.00	0.00	14.00	20.00	0.00
4	0.00	0.00	0.00	14.00	20.00	0.00
5	0.00	0.00	0.00	14.00	20.00	0.00

Support Data

Columns

Units: Supp	cla, c2a, cla	clb, c c2a	2b (in); Ha	Ha, Hb (ft) clb	c2b	Hb	Red%
1	18.00	18.00	12.000	18.00	18.00	12.000	100
2	18.00	18.00	12.000	18.00	18.00	12.000	100
3	18.00	18.00	12.000	18.00	18.00	12.000	100
4	18.00	18.00	12.000	18.00	18.00	12.000	100

Transverse Beams

Units:	b, h, Ecc	(in)	
Supp	b	h	Ecc
1	14.00	27.00	-2.00
2	14.00	20.00	0.00
3	14.00	20.00	0.00
4	14.00	27.00	2.00

Boundary Conditions

Units:	Kz (kip/in);	Kry (kip-in/	(rad)	
Supp	Spring Kz	Spring Kry F	Far End A Fa	ar End B
1	0	0	Fixed	Fixed
2	0	0	Fixed	Fixed
3	0	0	Fixed	Fixed
4	0	0	Fixed	Fixed

Load Data = :

=======	==		
Load	Cases	and	Combinations
Case	De	ead	Live
Type	DI	EAD	LIVE

U1	1.200	1.600

Area Loads

Units: Wa Case/Patt	()	Wa
Dead	1	84.30
	2	84.30
	3	84.30
	4	84.30
	5	84.30
Live	1	100.00
	2	100.00
	3	100.00
	4	100.00
	5	100.00

Reinforcement Criteria

Slabs and Ribs

-	Top ba	ars	Bottom ba	ars	
	Min	Max	Min	Max	
Bar Size	#4	#8	#4	#8	
Bar spacing	1.00	18.00	1.00	18.00	in
Reinf ratio	0.14	5.00	0.14	5.00	00
Cover	0.75		0.75		in
There is NOT	more than	12 in o	f concrete	below	top bars.

Beams

	Top bars		_	Bottom bars			Stirrups			
	Mir	n	Max		Min	Max		Min	Max	
Bar Size	 #4	 4	 #8		#4	 #8		 #4	 #5	
Bar spacing	1.00) 1	8.00		1.00	18.00		6.00	18.00	in
Reinf ratio	0.14	4	5.00		0.14	5.00	%			
Cover	0.75	5			1.51		in			
Layer dist.	1.00	C			1.00		in			
No. of legs								2	б	
Side cover								1.50		in
lst Stirrup								3.00		in
There is NOT	more t	than 1	2 in	of	concrete	below	top	bars.		

Page 1

					000	000	0				0		
					00	00	00				00		
	00	000	000	000	00		00		000	000	00		
	00	0	00	00	00		00		0	00	00		
	00		00	00	00	0	00		000	0000	000	000	
	00	000	00	00		000	00		00	00	00	00	
		00	000	000		00	00		00	00	00	00	
	0	00	00		00	00	00	0	00	00	00	00	
	00	000	00		000	000	oc	0	000	000 0	00	000	(TM)
	A Comp Reinf	orced	Conc	rete : ht ©	-	One-1	Desi way a STRUC	gn, ind I TURE	rwo-wa	ay Sla	ab Sy		
Licensee stated be responsible f for processing h	or ei	ther	the	accu	-	or a	adequ	lacy		the			

for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spSlab program. Although STRUCTUREPOINT has endeavored to produce spSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spSlab program.

[2] DESIGN RESULTS*

*Unless otherwise noted, all results are in the direction of analysis only. Another analysis in the perpendicular direction has to be carried out for two-way slab systems.

Strip Widths and Distribution Factors

Units: Width (ft).

	(- , ·	_Width				Factor		
Span Strip	Left**	Right**	Bottom*	Left**	Right**	Bottom*		
1 Column	7.58	7.58	7.58	0.122	0.122	0.113		
Middle	13.25	13.25	13.25	0.188	0.188	0.250		
Beam	1.17	1.17	1.17	0.690	0.690	0.637		
2 Column	7.58	7.58	7.58	0.113	0.101	0.101		
Middle	13.25	13.25	13.25	0.246	0.327	0.327		
Beam	1.17	1.17	1.17	0.641	0.572	0.572		
3 Column	7.58	7.58	7.58	0.101	0.101	0.101		
Middle	13.25	13.25	13.25	0.327	0.327	0.327		
Beam	1.17	1.17	1.17	0.572	0.572	0.572		
4 Column	7.58	7.58	7.58	0.101	0.113	0.101		
Middle	13.25	13.25	13.25	0.327	0.246	0.327		
Beam	1.17	1.17	1.17	0.572	0.641	0.572		
5 Column	7.58	7.58	7.58	0.122	0.122	0.113		
Middle	13.25	13.25	13.25	0.188	0.188	0.250		
Beam	1.17	1.17	1.17	0.690	0.690	0.637		
ATT 1 C 1		c .	di	1 6 1				

*Used for bottom reinforcement. **Used for top reinforcement.

Top Reinforcement

Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in)

Span Strip	Zone	Width	Mmax	Xmax	AsMin	AsMax	AsReq	SpProv	Bars
1 Column	Left	7.58	0.02	0.217	0.983	8.218	0.001	11.375	8-#4 *3 *5
	Midspan	7.58	0.06	0.402	0.983	8.218	0.003	11.375	8-#4 *3 *5
	Right	7.58	0.14	0.619	0.983	8.218	0.006	11.375	8-#4 *3 *5
Middle	Left	13.25	0.03	0.217	1.717	14.360	0.001	11.357	14-#4 *3 *5
	Midspan	13.25	0.10	0.402	1.717	14.360	0.004	11.357	14-#4 *3 *5
	Right	13.25	0.22	0.619	1.717	14.360	0.010	11.357	14-#4 *3 *5
Beam	Left	1.17	0.11	0.217	0.372	4.805	0.001	8.664	2-#4 *3
	Midspan	1.17	0.35	0.402	0.372	4.805	0.004	8.664	2-#4 *3
	Right	1.17	0.79	0.619	0.372	4.805	0.009	2.888	4-#4 *3
2 Column	Left	7.58	7.06	0.750	0.983	8.218	0.316	11.375	8-#4 *3 *5
	Midspan	7.58	0.00	8.750	0.000	8.218	0.000	0.000	
	Right	7.58	14.23	16.750	0.983	8.218	0.640	11.375	8-#4 *3 *5

spSlab v5.00 © StructurePoint

Licensed to: StructurePoint, License ID: 66184-1055152-4-2C6B6-2C6B6 C:\TSDA\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Page 2

	Middle	Left Midspan Right	13.25 13.25 13.25	15.36 0.00 46.12	0.750 8.750 16.750	1.717 0.000 1.717	14.360 14.360 14.360	0.688 0.000 2.099	11.357 0.000 11.357	14-#4 *3 *5 14-#4 *5
	Beam	Left Midspan Right	1.17 1.17 1.17	40.00 0.00 80.63	0.750 8.750 16.750	0.632 0.000 0.887	4.805 4.805 4.805	0.475 0.000 0.975	2.888 0.000 2.166	4-#4 *3 5-#4
3	Column	Left Midspan Right	7.58 7.58 7.58	12.91 0.15 12.91	0.750 11.150 16.750	0.983 0.983 0.983	8.218 8.218 8.218	0.580 0.007 0.580	11.375 11.375 11.375	8-#4 *3 *5 8-#4 *3 *5 8-#4 *3 *5
	Middle	Left Midspan Right	13.25 13.25 13.25	41.84 0.47 41.84	0.750 11.150 16.750	1.717 1.717 1.717	14.360 14.360 14.360	1.900 0.021 1.900	11.357 11.357 11.357	14-#4 *5 14-#4 *3 *5 14-#4 *5
	Beam	Left Midspan Right	1.17 1.17 1.17	73.15 0.83 73.15	0.750 11.150 16.750	0.887 0.372 0.887	4.805 4.805 4.805	0.881 0.010 0.881	2.166 8.664 2.166	5-#4 *3 2-#4 *3 5-#4 *3
4	Column	Left Midspan Right	7.58 7.58 7.58	14.23 0.00 7.06	0.750 8.750 16.750	0.983 0.000 0.983	8.218 8.218 8.218	0.640 0.000 0.316	11.375 0.000 11.375	8-#4 *3 *5 8-#4 *3 *5
	Middle	Left Midspan Right	13.25 13.25 13.25	46.12 0.00 15.36	0.750 8.750 16.750	1.717 0.000 1.717	14.360 14.360 14.360	2.099 0.000 0.688	11.357 0.000 11.357	14-#4 *5 14-#4 *3 *5
	Beam	Left Midspan Right	1.17 1.17 1.17	80.63 0.00 40.00	0.750 8.750 16.750	0.887 0.000 0.632	4.805 4.805 4.805	0.975 0.000 0.475	2.166 0.000 2.888	5-#4 4-#4 *3
5	Column	Left Midspan Right	7.58 7.58 7.58	0.14 0.06 0.02	0.131 0.348 0.533	0.983 0.983 0.983	8.218 8.218 8.218	0.006 0.003 0.001	11.375 11.375 11.375	8-#4 *3 *5 8-#4 *3 *5 8-#4 *3 *5
	Middle	Left Midspan Right	13.25 13.25 13.25	0.22 0.10 0.03	0.131 0.348 0.533	1.717 1.717 1.717	14.360 14.360 14.360	0.010 0.004 0.001	11.357 11.357 11.357	14-#4 *3 *5 14-#4 *3 *5 14-#4 *3 *5
	Beam	Left Midspan Right	1.17 1.17 1.17	0.79 0.35 0.11	0.131 0.348 0.533	0.372 0.372 0.372	4.805 4.805 4.805	0.009 0.004 0.001	2.888 8.664 8.664	4-#4 *3 2-#4 *3 2-#4 *3

NOTES:

*3 - Design governed by minimum reinforcement.*5 - Number of bars governed by maximum allowable spacing.

Top Bar Details

_____ Units: Length (ft)

			Left			Conti	.nuous		Righ	ιt	
Span	Strip	Bars	Length								
1	Column					8-#4	0.75				
	Middle					14-#4	0.75				
	Beam					2-#4	0.75	1-#4	0.75	1-#4	0.75
2	Column	5-#4	3.75	3-#4	1.75			5-#4	6.75	3-#4	1.75
	Middle	14-#4	3.75					14-#4	6.75		
	Beam	4-#4	4.33					5-#4	7.33		
3	Column					8-#4	17.50				
	Middle					14-#4	17.50				
	Beam	2-#4*	4.01	1-#4*	2.59	2-#4	17.50	2-#4*	4.01	1-#4*	2.59
4	Column	5-#4	6.75	3-#4	1.75			5-#4	3.75	3-#4	1.75
	Middle	14-#4	6.75					14-#4	3.75		
	Beam	5-#4	7.33					4-#4	4.33		
5	Column					8-#4	0.75				
	Middle					14-#4	0.75				
	Beam	1-#4	0.75	1-#4	0.75	2-#4	0.75				

NOTES:

* - Bar cut-off location does not meet ACI 318, 12.10.5.1. Revise location, unless the requirements of either 12.10.5.2 or 12.10.5.3 are manually checked and satisfied.

Top Bar Development Lengths

Units: Length (in)

Units:	Length (lın
--------	----------	-----

UNILS. Lt	Left					nuous		Right			
Span Str:	ip Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen	Bars	DevLen	
1 Colu	umn				8-#4	12.00					
Mido	dle				14-#4	12.00					
Bear	n				2-#4	12.00	1-#4	12.00	1-#4	12.00	
2 Colu	umn 5-#4	12.00	3-#4	12.00			5-#4	12.00	3-#4	12.00	

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055152-4-2C6B6-2C6B6 C:\TSDA\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Page 3

Middle Beam	14-#4 4-#4	12.00 12.00					14-#4 5-#4	12.00 13.87		
3 Column Middle					8-#4 14-#4	12.00 12.00				
Beam	2-#4	12.54	1-#4	12.54	2-#4	12.00	2-#4	12.54	1-#4	12.54
4 Column Middle Beam	5-#4 14-#4 5-#4	12.00 12.00 13.87	3-#4	12.00			5-#4 14-#4 4-#4	12.00 12.00 12.00	3-#4 	12.00
5 Column Middle Beam	 1-#4	12.00	 1-#4	12.00	8-#4 14-#4 2-#4	12.00 12.00 12.00	 		 	

Bottom Reinforcement _____

Units: Width	(ft), Mmax	(k-ft),	Xmax (ft),	As (in^2	!), Sp (in)
Span Strip	Width	Mmax	Xmax	AsMin	AsMax

	Strip	Width	(K-IC), Mmax	Xmax (IC), Xmax	AS (III AsMin	AsMax	AsReq	SpProv	Bars
1	Column	7.58	0.00	0.309	0.000	8.218	0.000	0.000	
	Middle	13.25	0.00	0.309	0.000	14.360	0.000	0.000	
	Beam	1.17	0.00	0.309	0.000	4.613	0.000	0.000	
2	Column	7.58	8.50	8.000	0.983	8.218	0.381	11.375	8-#4 *3 *5
	Middle	13.25	27.55	8.000	1.717	14.360	1.242	11.357	14-#4 *3 *5
	Beam	1.17	48.17	8.000	0.797	4.613	0.599	2.888	4-#4 *3
3	Column	7.58	6.47	8.750	0.983	8.218	0.289	11.375	8-#4 *3 *5
	Middle	13.25	20.96	8.750	1.717	14.360	0.942	11.357	14-#4 *3 *5
	Beam	1.17	36.65	8.750	0.603	4.613	0.454	2.888	4-#4 *3
4	Column	7.58	8.50	9.500	0.983	8.218	0.381	11.375	8-#4 *3 *5
	Middle	13.25	27.55	9.500	1.717	14.360	1.242	11.357	14-#4 *3 *5
	Beam	1.17	48.17	9.500	0.797	4.613	0.599	2.888	4-#4 *3
5	Column	7.58	0.00	0.441	0.000	8.218	0.000	0.000	
	Middle	13.25	0.00	0.441	0.000	14.360	0.000	0.000	
	Beam	1.17	0.00	0.441	0.000	4.613	0.000	0.000	

NOTES:

*3 - Design governed by minimum reinforcement.*5 - Number of bars governed by maximum allowable spacing.

Bottom Bar Details _____

Units: Star		5 .	,					
	L	ong Bars		Short Bars				
Span Strip	Bars	Start	-	Bars	Start	Length		
1 Colum								
Middle	e							
Beam								
2 Colum	n 8-#4	0.00	17.50					
Middle	e 9-#4	0.00	17.50	5-#4	0.00	14.88		
Beam	4-#4	0.00	17.50					
2 Colum	n 8-#4	0 00	17.50					
	2 9-#4				2.63	12.25		
Beam				- 11				
4 Column	1 8-#4	0.00	17.50					
Middle	e 9-#4	0.00	17.50	5-#4	2.63	14.88		
Beam	4-#4	0.00	17.50					
5 Colum								
Middle								
Beam								

Bottom Bar Development Lengths

Units: DevLen (in)

Span Strip	Long H Bars	Bars DevLen	Short Bars	Bars DevLen
1 Column				
Middle				
Beam				
2 Column	8-#4	12.00		
Middle	9-#4	12.00	5-#4	12.00
Beam	4-#4	12.00		
3 Column Middle	8-#4 9-#4	12.00 12.00	 5-#4	12.00
Beam	4-#4	12.00		12.00

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055152-4-2C6B6-2C6B6 C:\TSDA\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

Flexural Capacity

Beam

Units: x (ft), As (in^2), PhiMn, Mu (k-ft)

Strip	x	AsTop	PhiMn-	Top Mu- 0	Comb P	at Stati	s AsBot	PhiMn+	Bottom_ Mu+ (Comb Pat	Status
		1 60	24 00		 TT1 -	11 077				 דדז דזז	
Column		1.60	-34.88	0.00	U1 A		0.00	0.00	0.00	U1 All	OK
	0.217	1.60	-34.88	-0.02	U1 A		0.00	0.00	0.00	U1 All	OK
	0.375	1.60	-34.88	-0.05	U1 A		0.00	0.00	0.00	U1 All	OK
	0.402	1.60	-34.88	-0.06	U1 A		0.00	0.00	0.00	U1 All	OK
	0.619	1.60	-34.88	-0.14	U1 A		0.00	0.00	0.00	U1 All	OK
	0.750	1.60	-34.88	-0.20	U1 A		0.00	0.00	0.00	U1 All	
Middle	0.000	2.80	-61.04	0.00	U1 A	.11 OK	0.00	0.00	0.00	Ul All	OK
	0.217	2.80	-61.04	-0.03	U1 A	11 OK	0.00	0.00	0.00	U1 All	OK
	0.375	2.80	-61.04	-0.08	U1 A	11 OK	0.00	0.00	0.00	U1 All	OK
	0.402	2.80	-61.04	-0.10	U1 A	11 OK	0.00	0.00	0.00	U1 All	OK
	0.619	2.80	-61.04	-0.22	U1 A	ll ok	0.00	0.00	0.00	U1 All	OK
	0.750	2.80	-61.04	-0.30	U1 A	11	0.00	0.00	0.00	U1 All	
Beam	0.000	0.80	-66.58	0.00	Ul A		0.00	0.00	0.00	U1 All	OK
	0.217	0.80	-66.58	-0.11	U1 A		0.00	0.00	0.00	U1 All	OK
	0.375	0.80	-66.58	-0.31	U1 A		0.00	0.00	0.00	U1 All	OK
	0.402	0.80	-66.58	-0.35	U1 A		0.00	0.00	0.00	U1 All	OK
	0.619	0.80	-66.58	-0.79	U1 A		0.00	0.00	0.00	U1 All	OK
	0.750				UI A						
	0.750	0.80	-66.58	-1.12	UI A	.11	0.00	0.00	0.00	U1 All	
Column	0.000	1.60	-34.88	-10.78	Ul A	11	1.60	34.88	0.00	U1 All	
	0.750	1.60	-34.88	-7.06	U1 A	ll ok	1.60	34.88	0.00	U1 All	OK
	1.750	1.00	-22.06	-2.95		ven OK	1.60	34.88	0.00	U1 All	OK
	2.750	1.00	-22.06	0.00	U1 A		1.60	34.88	0.83	U1 All	OK
	3.750	0.00	0.00	0.00	U1 A		1.60	34.88	3.52	U1 All	OK
	6.350	0.00	0.00	0.00	U1 A		1.60	34.88	7.81	U1 All	OK
	8.000	0.00	0.00		UI A Ul A			34.88	8.50	UI AII UI All	
				0.00			1.60				OK
	8.750	0.00	0.00	0.00	U1 A		1.60	34.88	8.29	U1 All	OK
	10.750	0.00	0.00	0.00	U1 A		1.60	34.88	6.46	Ul Even	
	11.150	0.40	-8.93	0.00	U1 A		1.60	34.88	5.94	Ul Even	
	11.750	1.00	-22.06	0.00	U1 A		1.60	34.88	5.02	Ul Ever	
	15.750	1.00	-22.06	-9.46	U1 A		1.60	34.88	0.00	U1 All	OK
	16.750	1.60	-34.88	-14.23	U1 A	.11 OK	1.60	34.88	0.00	U1 All	OK
	17.500	1.60	-34.88	-18.14	U1 A	.11	1.60	34.88	0.00	Ul All	
Middle	0.000	2.80	-61.04	-22.97	U1 A	.11	2.80	61.04	0.00	U1 All	
	0.750	2.80	-61.04	-15.36	U1 A	11 OK	2.80	61.04	0.00	U1 All	OK
	2.750	2.80	-61.04	0.00	U1 A	.11 OK	2.80	61.04	2.68	U1 All	OK
	3.750	0.00	0.00	0.00	U1 A		2.80	61.04	11.41	U1 All	OK
	6.350	0.00	0.00	0.00	U1 A		2.80	61.04	25.30	U1 All	OK
	8.000	0.00	0.00	0.00	U1 A		2.80	61.04	27.55	U1 All	OK
	8.750	0.00	0.00	0.00	U1 A		2.80	61.04	26.88	U1 All	OK
	10.750	0.00	0.00	0.00	U1 A		2.80	61.04	20.00	Ul Even	
	11.150	1.12	-24.89	0.00	UI A		2.80	61.04	19.25	Ul Even	
	11.750	2.80	-61.04	0.00	UI A Ul A		2.80	61.04	19.25	Ul Even	
	13.875	2.80	-61.04	-8.12	U1 0		2.80	61.04	1.02	Ul Even	
	14.875	2.80	-61.04	-17.71	U1 A		1.80	39.69	0.00	U1 All	OK
	16.750	2.80	-61.04	-46.12	U1 A		1.80	39.69	0.00	U1 All	OK
	17.500	2.80	-61.04	-59.82	U1 A		1.80	39.69	0.00	Ul All	
Beam	0.000	0.80	-66.58	-61.08	U1 A		0.80	63.86	0.00	U1 All	
	0.750	0.80	-66.58	-40.00	U1 A	.11 OK	0.80	63.86	0.00	U1 All	OK
	3.333	0.80	-66.58	0.00	U1 A		0.80	63.86	13.97	U1 All	OK
	4.333	0.00	0.00	0.00	U1 A		0.80	63.86	27.32	U1 All	OK
	6.350	0.00	0.00	0.00	Ul A		0.80	63.86	44.24	U1 All	OK
	8.000	0.00	0.00	0.00	U1 A		0.80	63.86	48.17	U1 All	OK
	8.750	0.00	0.00	0.00	U1 A		0.80	63.86	46.99	U1 All	
	10.167	0.00	0.00	0.00	U1 A		0.80	63.86	40.07	Ul Even	
	11.150	0.85	-70.69	0.00	UI A		0.80	63.86	33.65	Ul Even	
	11.322	1.00	-82.66	0.00	U1 A		0.80	63.86	32.25	Ul Even	
	16.750	1.00	-82.66	-80.63	U1 A		0.80	63.86	0.00	U1 All	
	17.000	1.00	-82.66	-87.85	U1 A		0.80	63.86	0.00	U1 All	
	17.500	1.00	-82.66	-102.80	Ul A	.11	0.80	63.86	0.00	U1 All	
Column	0.000	1.60	-34.88	-16.55	Ul A	.11	1.60	34.88	0.00	U1 All	
COLOUNI	0.750	1.60	-34.88	-12.91	UI A		1.60	34.88	0.00	U1 All	OK
	6.350	1.60	-34.88	-0.15		ven OK	1.60	34.88	5.05	Ul Odd	OK
	8.750	1.60	-34.88	0.00		.ll OK	1.60	34.88	6.47	Ul Odd	OK
	11.150	1.60	-34.88	-0.15		ven OK	1.60	34.88	5.05	Ul Odd	OK
	16.750	1.60	-34.88	-12.91	U1 A		1.60	34.88	0.00	Ul All	OK
	17.500	1.60	-34.88	-16.55	Ul A	.11	1.60	34.88	0.00	U1 All	
Middle	0.000	2.80	-61.04	-53.65	U1 A	.11	1.80	39.69	0.00	U1 All	
	0.750	2.80	-61.04	-41.84	U1 A		1.80	39.69	0.00	U1 All	OK
	2.625	2.80	-61.04	-16.97	U1 A		1.80	39.69	0.00	U1 All	OK
			<u><u> </u></u>				1.00	52.02	5.00	OT UTT	010
	3.625	2.80	-61.04	-9.01	Ul S	1 OK	2.80	61.04	1.12	U1 S3	OK

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055152-4-2C6B6-2C6B6 C:\TSD

03-31-2017, 02:57:55 PM

Page	5

					55152-4-2C6B6-2 ing Between Sup				
Beam	$\begin{array}{c} 8.750\\ 11.150\\ 13.875\\ 14.875\\ 16.750\\ 17.500\\ 0.000\\ 0.250\\ 0.750\\ 1.542\\ 2.587\\ 2.963\\ 4.008\\ 6.350\\ 8.750\\ 11.150\\ 13.492\\ 14.537\\ 14.913\\ 15.958\\ 16.750\\ 17.250\\ 17.500\end{array}$	2.80 2.80 2.80 2.80 1.00 1.00 1.00 0.80 0.40 0.40 0.40 0.40 0.40 0.40 0.50 1.00	-61.04 -61.04 -61.04 -61.04 -61.04 -82.66 -82.66 -82.66 -82.66 -66.58 -66.58 -33.75 -33.75 -33.75 -33.75 -33.75 -66.58 -82.66 -82.	$\begin{array}{c} 0.00\\ -0.47\\ -9.01\\ -16.97\\ -41.84\\ -53.65\\ -93.79\\ -86.71\\ -73.15\\ -53.37\\ -30.42\\ -23.03\\ -12.84\\ -0.83\\ 0.00\\ -0.83\\ -12.84\\ -23.03\\ -12.84\\ -23.03\\ -30.42\\ -53.37\\ -73.15\\ -86.71\\ -93.79\end{array}$	U1 All OK U1 Even OK U1 S4 OK U1 All OK U1 All OK U1 All U1 All U1 All U1 All OK U1 All OK U1 All OK U1 All OK U1 All OK U1 Even OK U1 Even OK U1 Even OK U1 All OK	2.80 2.80 1.80 1.80 1.80 0.80	61.04 61.04 39.69 39.69 39.69 63.86 6	$\begin{array}{c} 20.96\\ 16.37\\ 1.12\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 6.74\\ 28.62\\ 36.65\\ 28.62\\ 6.74\\ 0.00\\ $	U1 Odd OK U1 Odd OK U1 S2 OK U1 A11 OK U1 A11 OK U1 A11 U1 A11 U1 A11 U1 A11 OK U1 A11 OK U1 A11 OK U1 A11 OK U1 Odd OK U1 S2 OK U1 A11 OK U1 A11 OK U1 A11 OK U1 A11 OK U1 A11 U1 A11 U1 A11
4 Column	0.000 0.750 1.750 5.750 6.350 6.750 8.750 9.500 11.150 13.750 14.750 15.750 16.750 17.500	$\begin{array}{c} 1.60\\ 1.60\\ 1.00\\ 1.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 1.00\\ 1.00\\ 1.60\\ 1.60\\ 1.60\\ \end{array}$	$\begin{array}{c} -34.88\\ -34.88\\ -22.06\\ -22.06\\ -8.93\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -22.06\\ -22.06\\ -34.88\\ -34.88\end{array}$	$\begin{array}{c} -18.14\\ -14.23\\ -9.46\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -2.95\\ -7.06\\ -10.78\end{array}$	U1 All U1 All OK U1 All OK	1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	34.88 3	$\begin{array}{c} 0.00\\ 0.00\\ 5.02\\ 5.94\\ 6.46\\ 8.29\\ 8.50\\ 7.81\\ 3.52\\ 0.83\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	U1 All U1 All OK U1 All OK U1 Even OK U1 Even OK U1 Even OK U1 All OK
Middle Beam	0.000 0.750 2.625 3.625 5.750 6.350 6.750 8.750 9.500 11.150 13.750 14.750 14.750 16.750 0.000 0.500 0.750 6.178 6.350 7.333	2.80 2.80 2.80 2.80 1.12 0.00 0.00 0.00 0.00 2.80 2.80 2.80 1.00 1.00 1.00 0.85 0.00	$\begin{array}{c} -61.04 \\ -61.04 \\ -61.04 \\ -61.04 \\ -61.04 \\ -24.89 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -61.04 \\ -61.04 \\ -61.04 \\ -82.66 \\ -82.66 \\ -82.66 \\ -82.66 \\ -82.66 \\ -82.66 \\ -70.69 \\ 0.00 \\ 0.00 \end{array}$	-59.82 -46.12 -17.71 -8.12 0.00	U1 All U1 All OK U1 All OK U1 Odd OK U1 All OK U1 All U1 All U1 All U1 All OK U1 All OK U1 All OK U1 All OK U1 All OK U1 All OK	1.80 1.80 1.80 2.80 0.90 0.90	39.69 39.69 39.69 61.04 63.86 63.86 63.86 63.86 63.86	$\begin{array}{c} 0.00\\ 0.00\\ 1.02\\ 16.26\\ 19.25\\ 20.94\\ 26.88\\ 27.55\\ 25.30\\ 11.41\\ 2.68\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 32.25\\ 33.65\\ 40.07\\ \end{array}$	Ul All Ul All OK Ul All OK Ul Even OK Ul Even OK Ul Even OK Ul Even OK Ul All OK Ul All Ul All Ul All Ul All Ul All OK Ul Even OK UL Even OK UL Even OK
	8.750 9.500 11.150 13.167 14.167 16.750 17.500	0.00 0.00 0.00 0.00 0.80 0.80 0.80	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ -66.58\\ -66.58\\ -66.58\end{array}$	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -40.00 \\ -61.08 \end{array}$	U1 All OK U1 All OK U1 All OK U1 All OK U1 All OK U1 All OK U1 All	0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	63.86 63.86 63.86 63.86 63.86 63.86 63.86 63.86	46.99 48.17 44.24 27.32 13.97 0.00 0.00	U1 All OK U1 All OK U1 All OK U1 All OK U1 All OK U1 All OK U1 All
5 Column Middle	0.000 0.131 0.348 0.375 0.533 0.750 0.000	1.60 1.60 1.60 1.60 1.60 1.60 2.80	-34.88 -34.88 -34.88 -34.88 -34.88 -34.88 -34.88 -34.88 -61.04	$\begin{array}{c} -0.20 \\ -0.14 \\ -0.06 \\ -0.05 \\ -0.02 \\ 0.00 \\ -0.30 \end{array}$	U1 All U1 All OK U1 All OK U1 All OK U1 All OK U1 All OK U1 All	$\begin{array}{c} 0 . 0 0 \\ 0 . 0 0 \\ 0 . 0 0 \\ 0 . 0 0 \\ 0 . 0 0 \\ 0 . 0 0 \\ 0 . 0 0 \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Ul All Ul All OK Ul All OK Ul All OK Ul All OK Ul All OK Ul All
Beam	0.131 0.348 0.375 0.533 0.750 0.000 0.131 0.348 0.375 0.533 0.750	2.80 2.80 2.80 2.80 0.80 0.80 0.80 0.80	-61.04 -61.04 -61.04 -61.04 -66.58 -66.58 -66.58 -66.58 -66.58 -66.58 -66.58 -66.58 -66.58	$\begin{array}{c} -0.22 \\ -0.10 \\ -0.08 \\ -0.03 \\ 0.00 \\ -1.12 \\ -0.79 \\ -0.35 \\ -0.31 \\ -0.11 \\ 0.00 \end{array}$	U1 All OK U1 All OK	$\begin{array}{c} 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	U1 A11 OK U1 A11 OK

Longitudinal Beam Transverse Reinforcement Demand and Capacity -----

Page 6

Section Properties

Units: Span		Av/s (in^2 Av/s)min	/in), PhiVc PhiVc	(kip)
1	18.24	0.0117	24.23	
2	18.24	0.0117	24.23	
3	18.24	0.0117	24.23	
4	18.24	0.0117	24.23	
5	18.24	0.0117	24.23	

Beam Transverse Reinforcement Demand

Units: Start, End, Xu (in), Vu (ft), Av/s (kip/in^2)

Units:	Start,	Ena, xu (in), vu (i	_Demand_				
Span	Start	End	Xu		lred Comb/Patt	Av/s	Av/s	
1	0.000	0.000	0.000	0.00	U1/All	0.0000	0.0000	
2	1.000 4.122 5.973 7.824 9.676 11.527 13.378	9.676 11.527	2.270 4.122 5.973 9.676 11.527 13.378 15.230	32.32 21.68 11.37 10.23 20.87 31.50 42.14	U1/All U1/Even U1/All U1/All U1/All U1/All U1/All	0.0099 0.0000 0.0000 0.0000 0.0000 0.0089 0.0218	0.0117 0.0117 0.0000 0.0000 0.0117 0.0117 0.0218	*8
3	1.000 4.122 5.973 7.824 9.676 11.527 13.378	4.122 5.973 7.824 9.676 11.527 13.378 16.500	2.270 4.122 5.973 9.676 11.527 13.378 15.230	37.23 26.59 15.96 6.78 15.96 26.59 37.23	U1/All U1/All U1/All U1/S3 U1/All U1/All U1/All	0.0158 0.0029 0.0000 0.0000 0.0000 0.0029 0.0158	0.0158 0.0117 0.0017 0.0000 0.0117 0.0117 0.0158	*8
4	1.000 4.122 5.973 7.824 9.676 11.527 13.378	4.122 5.973 7.824 9.676 11.527 13.378 16.500	2.270 4.122 5.973 7.824 11.527 13.378 15.230	42.14 31.50 20.87 10.23 11.37 21.68 32.32	U1/All U1/All U1/All U1/Even U1/All U1/All	0.0218 0.0089 0.0000 0.0000 0.0000 0.0000 0.0009	0.0218 0.0117 0.0117 0.0000 0.0000 0.0117 0.0117	*8
5	0.750	0.750	0.750	0.00	U1/All	0.0000	0.0000	

NOTES:

*8 - Minimum transverse (stirrup) reinforcement governs.

```
Beam Transverse Reinforcement Details
```

Units: spacing & distance (in). Span Size Stirrups (2 legs each unless otherwise noted)

1 #5 --- None ---2 #4 8 @ 8.0 + <-- 44.4 --> + 10 @ 8.6 3 #4 10 @ 8.6 + <-- 22.2 --> + 10 @ 8.6 4 #4 10 @ 8.6 + <-- 44.4 --> + 8 @ 8.0 5 #5 --- None ---

Beam Transverse Reinforcement Capacity

Units: Start, End, Xu (ft), Vu, PhiVn (kip), Av/s (in^2/in), Av (in^2), Sp (in)

				Requ	Required			Provio	ded	
Span	Start	End	Xu	Vu	Comb/Patt	Av/s	Av	Sp	Av/s	PhiVn
1	0.000	0.750	0.000	0.00	U1/All					
2	0.000	1.000	2.270	32.32	U1/All					
	1.000	5.973	2.270	32.32	U1/All	0.0099	0.40	8.0	0.0503	65.50 *8
	5.973	9.676	5.973	11.37	U1/Even	0.0000				12.11
	9.676	16.500	15.230	42.14	U1/All	0.0218	0.40	8.6	0.0464	62.32
	16.500	17.500	15.230	42.14	U1/All					
3	0.000	1.000	2.270	37.23	U1/All					
	1.000	7.824	2.270	37.23	U1/All	0.0158	0.40	8.6	0.0464	62.32
	7.824	9.676	9.676	6.78	U1/S3	0.0000				12.11
	9.676	16.500	15.230	37.23	U1/All	0.0158	0.40	8.6	0.0464	62.32
	16.500	17.500	15.230	37.23	U1/All					
4	0.000	1.000	2.270	42.14	U1/All					
	1.000	7.824	2.270	42.14	U1/All	0.0218	0.40	8.6	0.0464	62.32
	7.824	11.527	11.527	11.37	U1/Even	0.0000				12.11
	11.527	16.500	15.230	32.32	U1/All	0.0099	0.40	8.0	0.0503	65.50 *8
	16.500	17.500	15.230	32.32	U1/All					
5	0.000	0.750	0.750	0.00	U1/All					

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055152-4-2C6B6-2C6B6 C:\TSDA\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb NOTES:

*8 - Minimum transverse (stirrup) reinforcement governs.

Slab Shear Capacity _____

Units: Span	b, d (in), b	Xu (ft d), PhiVc, Vratio	Vu(kip) PhiVc	Vu	Xu
1	250.00	5.00	0.000	118.59	0.00	0.00
2	250.00	5.00	0.000	118.59	0.00	16.33
3	250.00	5.00	0.000	118.59	0.00	16.33
4	250.00	5.00	0.000	118.59	0.00	1.17
5	250.00	5.00	0.000	118.59	0.00	0.00

Flexural Transfer of Negative Unbalanced Moment at Supports

		-						
==========	=======				========	====		
Units:	Width (in), Munb	(k-ft), As	(in^2)				
Supp	Width	Width-c	d	Munb C	omb Pat	GammaF	AsReq	AsProv Add Bars

Supp	Wiath	Width-C	a	Mund Com	b Pat	GammaF	Askeq	ASProv	Add Bars
1	36.00	36.00	5.00	93.21 Ul	All	0.687	3.421	1.187	12-#4
2	36.00	36.00	5.00	46.73 Ul	Even	0.600	1.333	1.387	
3	36.00	36.00	5.00	46.73 Ul	Even	0.600	1.333	1.387	
4	36.00	36.00	5.00	93.21 Ul	All	0.687	3.421	1.187	12-#4

Punching Shear Around Columns

Critical Section Properties -----

Units: b1, b2, b0, Supp Type b1	davg, CG, c(l b2	eft), c(right) b0 davg		. , ,	Jc (in^4) c(right)	Ac	Jc
1 Rect 20.50 2 Rect 23.00 3 Rect 23.00 4 Rect 20.50	23.00 9 23.00 9	4.00 17.25 2.00 13.52 2.00 13.52 4.00 17.25	2.41 0.00 0.00 -2.41	11.41 11.50 11.50 9.09	9.09 11.50 11.50 11.41	1104 1244 1244 1244 1104	95338 1.1499e+005 1.1499e+005 95338

Punching Shear Results ------

Units: Supp	Vu (kip), Munb Vu	(k-ft), vu vu				si) GammaV	vu	Phi*vc
1	48.47	43.9	83.49	U1	All	0.313	73.8	189.7
2	104.50	84.0	-16.77	U1	All	0.400	92.1	189.7
3	104.50	84.0	16.77	U1	All	0.400	92.1	189.7
4	48.47	43.9	-83.49	U1	All	0.313	73.8	189.7

Material Takeoff _____

Reinforcement in the Direction of Analysis

Top Bars:	673.5 lb	<=>	12.47 lb/ft	<=>	0.567 lb/ft^2
Bottom Bars:	876.8 lb	<=>	16.24 lb/ft	<=>	0.738 lb/ft^2
Stirrups:	183.9 lb	<=>	3.41 lb/ft	<=>	0.155 lb/ft^2
Total Steel:	1734.2 lb	<=>	32.11 lb/ft	<=>	1.460 lb/ft^2
Concrete:	817.2 ft	3 <=>	15.13 ft^3/ft	<=>	0.688 ft^3/ft^2

Page 7

Page 1

				000	0000	0			0		
				00	00	00			00		
	00000	000	000	00		00	00	000	00		
	00 0	00	00	00		00	0	00	00		
	00	00	00	00	00	00	00	0000	00000	00	
	00000	00	00		000	00	00	00	00	00	
	00	000	000		00	00	00	00	00	00	
	0 00	00		00	00	00 0	00	00	00	00	
	00000	00		000	0000	000	00	000 0	0000	00	(TM)
		=====		T		.00 (TM)					
	Computer	5			± ,	5,			0		
R	einforced					-		-	-	ems	
	Co	pyrig				STRUCTUR	EPOIN	T, LLC	!		
			Al	ll rig	ghts r	eserved					
=========================	========	=====	======				=====	=====	======	====	
any warranty expres by the spSlab progr program is not and analysis, design STRUCTUREPOINT dis	either the spS sed nor am. Alth cannot and claims al	the lab implie ough be eng l res	comput ed wit STRUCI certif ineeri sponsi	racy ter p th re TUREPO fied ing ibilit	or a program espect DINT ha infal docum ty in	m. Furt to th as ende lible. T ents contrac	of hermo e cor avore he f is t, ne	the re, S rectne d to p inal a the gligen	materi TRUCTU ess of produce ind c lic ice or	JREP the sp only cense cotl	supplied as input OINT neither makes e output prepared pSlab error free the responsibility for ee's. Accordingly,
 ECTION RESULTS		=====:	=====					=====			
_											

Section _____

Frame Section Properties

Units: Ig, Icr (in^4), Mcr (k-ft)

			M+ve			M-ve	
Span	Zone	Ig	Icr	Mcr	Ig	Icr	Mcr
1	Left	25395	0	63.14	9333	6766	-36.89
	Midspan	25395	0	63.14	9333	7147	-36.89
	Right	433026	0	1267.91	433026	23081	-1267.91
2	Left	25395	1552	63.14	9333	7147	-36.89
	Midspan	25395	2280	63.14	9333	0	-36.89
	Right	25395	1552	63.14	9333	7331	-36.89
3	Left	25395	1552	63.14	9333	7331	-36.89
	Midspan	25395	1552	63.14	9333	6766	-36.89
	Right	25395	1552	63.14	9333	7331	-36.89
4	Left	25395	1552	63.14	9333	7331	-36.89
	Midspan	25395	2280	63.14	9333	0	-36.89
	Right	25395	1552	63.14	9333	7147	-36.89
5	Left	433026	0	1267.91	433026	23081	-1267.91
	Midspan	25395	0	63.14	9333	7147	-36.89
	Right	25395	0	63.14	9333	6766	-36.89

NOTES: M+ve values are for positive moments (tension at bottom face). M-ve values are for negative moments (tension at top face).

Frame Effective Section Properties

_____ Units: Ie, Ie, avg (in^4), Mmax (k-ft)

			D	ead	Susta	ained	Dead	+Live
Span	Zone	Weight	Mmax	Ie	Mmax	Ie	Mmax	Ie
1	Right	1.000	-0.52	433026	-0.52	433026	-1.14	433026
	Span Avg			433026		433026		433026
2	Middle	0.850	27.19	25395	27.19	25395	59.43	25395
	Right	0.150	-58.35	7837	-58.35	7837	-127.56	7380
	Span Avg			22761		22761		22693
3	Left	0.150	-52.93	8009	-52.93	8009	-115.73	7396
	Middle	0.700	18.06	25395	18.06	25395	39.49	25395
	Right	0.150	-52.93	8009	-52.93	8009	-115.73	7396
	Span Avg			20179		20179		19995
4	Left	0.150	-58.35	7837	-58.35	7837	-127.56	7380
	Middle	0.850	27.19	25395	27.19	25395	59.43	25395
	Span Avg			22761		22761		22693
5	Left	1.000	-0.52	433026	-0.52	433026	-1.14	433026
	Span Avg			433026		433026		433026

Page 2

Units: Ig (in^4) Column Strip Middle Strip												
						Ratio						
Span	Ig	LDF	Ratio	Ig	LDF	Rallo						
1	20040.5	0.781	0.990	2862	0.219	1.943						
2	20040.5	0.693	0.878	2862	0.307	2.723						
3	20040.5	0.673	0.853	2862	0.327	2.903						
4	20040.5	0.693	0.878	2862	0.307	2.723						
5	20040.5	0.781	0.990	2862	0.219	1.943						

NOTES: Load distirubtion factor, LDL, averages moment distribution factors listed in [2] Design Results. Ratio refers to proportion of strip to frame deflections under fix-end condtions.

Instantaneous Deflections

Extreme Instantaneous Frame Deflections and Corresponding Locations

Units: Def (in), Loc (ft)

					Live		Total		
Span Di	Span Direction Value		Dead	Sustained Unsustained		Total	Sustained	Dead+Live	
1	Down	Def							
		Loc							
	Up	Def	-0.001		-0.001	-0.001	-0.001	-0.003	
	-	Loc	0.000		0.000	0.000	0.000	0.000	
2	Down	Def	0.011		0.013	0.013	0.011	0.024	
		Loc	8.000		8.000	8.000	8.000	8.000	
	Up	Def							
		Loc							
3	Down	Def	0.006		0.007	0.007	0.006	0.013	
		Loc	8.750		8.750	8.750	8.750	8.750	
	Up	Def	-0.000		-0.000	-0.000	-0.000	-0.001	
		Loc	1.000		1.000	1.000	1.000	1.000	
4	Down	Def	0.011		0.013	0.013	0.011	0.024	
		Loc	9.500		9.500	9.500	9.500	9.500	
	Up	Def							
		Loc							
5	Down	Def							
		Loc							
	Up	Def	-0.001		-0.001	-0.001	-0.001	-0.003	
	-	Loc	0.750		0.750	0.750	0.750	0.750	

Extreme Instantaneous Column Strip Deflections and Corresponding Locations

Units: Def (in), Loc (ft)

	(-,, ====	(,		Live		Total		
Span	Direction	Value	Dead	Sustained U	nsustained	Total	Sustained	Dead+Live	
1	Down	Def							
		Loc							
	Up	Def	-0.001		-0.001	-0.001	-0.001	-0.003	
		Loc	0.000		0.000	0.000	0.000	0.000	
2	Down	Def	0.010		0.012	0.012	0.010	0.023	
		Loc	8.000		8.000	8.000	8.000	8.000	
	Up	Def							
		Loc							
3	Down	Def	0.005		0.006	0.006	0.005	0.011	
		Loc	8.750		8.750	8.750	8.750	8.750	
	Up	Def	-0.000		-0.000	-0.000	-0.000	-0.001	
		Loc	1.000		1.000	1.000	1.000	1.000	
4	Down	Def	0.010		0.012	0.012	0.010	0.023	
		Loc	9.500		9.500	9.500	9.500	9.500	
	Up	Def							
		Loc							
5	Down	Def							
		Loc							
	Up	Def	-0.001		-0.001	-0.001	-0.001	-0.003	
	-	Loc	0.750		0.750	0.750	0.750	0.750	

Extreme Instantaneous Middle Strip Deflections and Corresponding Locations

Units: Def (in), Loc (ft)

011100	Der (III	// 100 (Live		Total		
Span Di	rection '	Value	Dead	Sustained Un	sustained	Total	Sustained	Dead+Live	
1	Down	Def							
		Loc							
	Up	Def	-0.001		-0.001	-0.001	-0.001	-0.003	
		Loc	0.000		0.000	0.000	0.000	0.000	
2	Down	Def	0.022		0.026	0.026	0.022	0.049	
		Loc	8.500		8.500	8.500	8.500	8.500	
	Up	Def							
		Loc							
3	Down	Def	0.020		0.024	0.024	0.020	0.044	
		Loc	8.750		8.750	8.750	8.750	8.750	
	Up	Def	-0.000		-0.000	-0.000	-0.000	-0.000	
		Loc	0.750		0.750	0.750	0.750	0.750	

spSlab v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 66184-1055152-4-2C6B6-2C6B6 C:\TSDA\TSDA-spSlab-Two-Way Slab with Beams Spanning Between Supports.slb

4	Down	Def Loc	0.022 9.000	 0.026 9.000	0.026 9.000	0.022 9.000	0.049 9.000
	Up	Def		 			
		Loc		 			
5	Down	Def		 			
		Loc		 			
	Up	Def	-0.001	 -0.001	-0.001	-0.001	-0.003
		Loc	0.750	 0.750	0.750	0.750	0.750

Long-term Deflections

Long-term Column Strip Deflection Factors

Time dependant factor for sustained loads = 2.000

Units: Astop, Asbot (in^2), b, d (in), Rho' (%), Lambda (-)

OILTON	Shieb' hbcop, hbboc (in 2), b, a (in), his (v), lambaa ()										
			N	M+ve		M-ve					
Span	Zone	Astop	b	d	Rho '	Lambda	Asbot	b	d	Rho'	Lambda
1	Right				0.000	2.000				0.000	2.000
2	Midspan				0.000	2.000				0.000	2.000
3	Midspan				0.000	2.000				0.000	2.000
4	Midspan				0.000	2.000				0.000	2.000
5	Left				0.000	2.000				0.000	2.000

NOTES: Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Long-term Middle Strip Deflection Factors

Time dependant factor for sustained loads = 2.000 Units: Astop, Asbot (in^2), b, d (in), Rho' (%), Lambda (-)

			_ , , , M	+ve				M-	-ve		
Span	Zone	Astop	b	d	Rho '	Lambda	Asbot	b	d	Rho'	Lambda
2 M 3 M 4 M	Right Midspan Midspan Midspan Left	 	 		0.000 0.000 0.000	2.000	 	 	 	0.000 0.000 0.000	2.000 2.000 2.000

NOTES: Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Extreme Long-term Column Strip Deflections and Corresponding Locations

Units: 1	 D (in).	x (ft)				
	rection	. ,	CS	cs+lu	cs+l	Total
1	Down	Def				
		Loc				
	Up	Def	-0.002	-0.004	-0.004	-0.005
		Loc	0.000	0.000	0.000	0.000
2	Down	Def	0.021	0.033	0.033	0.043
		Loc	8.000	8.000	8.000	8.000
	Up	Def				
		Loc				
3	Down	Def	0.010	0.015	0.015	0.020
		Loc	8.750	8.750	8.750	8.750
	Up	Def	-0.001	-0.001	-0.001	-0.001
		Loc	1.000	1.000	1.000	1.000
4	Down	Def	0.021	0.033	0.033	0.043
		Loc	9.500	9.500	9.500	9.500
	Up	Def				
		Loc				
5	Down	Def				
		Loc				
	Up	Def	-0.002	-0.004	-0.004	-0.005
		Loc	0.750	0.750	0.750	0.750

NOTES: Incremental deflections due to creep and shrinkage (cs) based on sustained load level values. Incremental deflections after partitions are installed can be estimated by deflections due to: - creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions, - creep and shrinkage plus live load (cs+l), if live load applied after partitions. Total deflections consist of dead, live, and creep and shrinkage deflections.

Extreme Long-term Middle Strip Deflections and Corresponding Locations

	D (in), irection	. ,	cs	cs+lu	cs+l	Total
1	Down	Def Loc				
	Up	Def Loc	-0.002	$-0.004 \\ 0.000$	$-0.004 \\ 0.000$	-0.005 0.000
2	Down	Def Loc	0.044 8.500	0.071 8.500	0.071 8.500	0.093 8.500
	Up	Def				

Page 4

		Loc				
3	Down	Def	0.040	0.064	0.064	0.084
		Loc	8.750	8.750	8.750	8.750
	Up	Def	-0.000	-0.001	-0.001	-0.001
		Loc	0.750	0.750	0.750	0.750
4	Down	Def	0.044	0.071	0.071	0.093
		Loc	9.000	9.000	9.000	9.000
	Up	Def				
		Loc				
5	Down	Def				
		Loc				
	Up	Def	-0.002	-0.004	-0.004	-0.005
		Loc	0.750	0.750	0.750	0.750

NOTES: Incremental deflections due to creep and shrinkage (cs) based on sustained load level values. Incremental deflections after partitions are installed can be estimated by deflections due to: - creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions, - creep and shrinkage plus live load (cs+l), if live load applied after partitions. Total deflections consist of dead, live, and creep and shrinkage deflections.

7. Summary and Comparison of Design Results

		Hand (EFM)	spSlab
	Exterior Sp	an	
	Exterior Negative*	38.4	40
Beam Strip	Positive	50.9	48.17
	Interior Negative*	73.1	80.63
	Exterior Negative*	6.8	7.06
Column Strip	Positive	9	8.5
	Interior Negative*	12.9	14.23
	Exterior Negative*	15	15.36
Middle Strip	Positive	29.5	27.55
	Interior Negative*	42.4	46.12
	Interior Sp	an	•
Beam Strip	Interior Negative*	67	73.15
Beam Surp	Positive	40.6	36.65
Column Strip	Interior Negative*	11.8	12.91
Column Surp	Positive	7.2	6.47
Middle Strip	Interior Negative*	38.8	41.84
mudic Sulp	Positive	23.5	20.96

		Table 10 - C	omparison of H	Reinforcement	Results		
Span Location		Reinforcement Provided for Flexure		Additional Provided fo Moment	Total Reinforcement Provided		
		Hand	spSlab	Hand	spSlab	Hand	spSlab
			Exterior S	Span			
_	Exterior Negative	4 - #4	4 - #4	n/a	n/a	4 - #4	4 - #4
Beam Strip	Positive	5 - #4	4 - #4	n/a	n/a	5 - #4	4 - #4
-	Interior Negative	5 - #4	5 - #4			5 - #4	5 - #4
	Exterior Negative	8 - #4	8 - #4	10 - #4	12 - #4	18 - #4	20 - #4
Column Strip	Positive	8 - #4	8 - #4	n/a	n/a	8 - #4	8 - #4
Julp	Interior Negative	8 - #4	8 - #4			8 - #4	8 - #4
	Exterior Negative	14 - #4	14 - #4	n/a	n/a	14 - #4	14 - #4
Middle Strip	Positive	14 - #4	14 - #4	n/a	n/a	14 - #4	14 - #4
Sulp	Interior Negative	14 - #4	14 - #4	n/a	n/a	14 - #4	14 - #4
			Interior S	Span			
Beam Strip	Positive	4 - #4	4 - #4	n/a	n/a	4 - #4	4 - #4
Column Strip	Positive	8 - #4	8 - #4	n/a	n/a	8 - #4	8 - #4
Middle Strip	Positive	14 - #4	14 - #4	n/a	n/a	14 - #4	14 - #4

Table 11 - (Comparison of Beam Shear Reinforce	ment Results					
Spon Location	Reinforcement Provided						
Span Location	Hand	spSlab					
	End Span						
Exterior	8 - #4 @ 8 in	8 - #4 @ 8 in					
Interior	10 - #4 @ 8.6 in	10 - #4 @ 8.6 in					
	Interior Span						
Interior	9 - #4 @ 8.6 in	10 - #4 @ 8.6 in					

Table 12 - Comparison of Two-Way (Punching) Shear Check Results (around Columns Faces)										
S	<i>b</i> ₁ , in.		<i>b</i> ₂ , in.		<i>b</i> ₀ , in.		V _u , kips		<i>с</i> _{АВ} , in.	
Support	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	20.5	20.5	23.0	44.0	64	64	43.56	48.47	9.09	9.09
Interior	23.0	23.0	23.0	23.0	92	92	104.76	104.50	11.50	11.50
S	J_c , in. ⁴		γv		Munb, ft-kips		vu, psi		<i>øvc,</i> psi	
Support	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	95338	95338	0.386	0.313	84.37	83.49	76.8	73.8	189.7	189.7
Interior	114993	114990	0.400	0.400	14.10	16.77	91.0	92.1	189.7	189.7

]	Table 13 - Co	mparison o	f Immediate	Deflection	Results (in.)			
			С	olumn Strip					
Span		D	D +]	D+LL _{sus}		D+LL _{full}		LL	
Span	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	
Exterior	0.009	0.010	0.009	0.010	0.021	0.023	0.011	0.012	
Interior	0.004	0.005	0.004	0.005	0.010	0.011	0.005	0.006	
			Ν	Aiddle Strip					
Snon		D		D+LL _{sus}		D+LL _{full}		LL	
Span	Hand	spSlab	Hand	spSlab	Hand	spSlab	Hand	spSlab	
Exterior	0.021	0.022	0.021	0.022	0.047	0.049	0.025	0.026	
Interior	0.019	0.020	0.019	0.020	0.042	0.044	0.023	0.024	

	Table 14	- Comparison	of Time-Depen	dent Deflection	Results	
			Column Strip			
Snon		λ_{Δ}	Δα	s, in.	$\Delta_{ m tot}$	al, in.
Span	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	2.0	2.0	0.019	0.021	0.040	0.043
Interior	2.0	2.0	0.009	0.010	0.018	0.020
			Middle Strip	•		•
Sman		λ_{Δ}	Δα	es, in.	Δ_{total} , in.	
Span	Hand	spSlab	Hand	spSlab	Hand	spSlab
Exterior	2.0	2.0	0.043	0.044	0.089	0.093
Interior	2.0	2.0	0.038	0.040	0.080	0.084

In all of the hand calculations illustrated above, the results are in close or exact agreement with the automated analysis and design results obtained from the spSlab model. Excerpts of spSlab graphical and text output are given below for illustration.

CONCRETE SOFTWARE SOLUTIONS

8. Conclusions & Observations

A slab system can be analyzed and designed by any procedure satisfying equilibrium and geometric compatibility. Three established methods are widely used. The requirements for two of them are described in detail in ACI 318-14 Chapter 8 (8.2.1).

Direct Design Method (DDM) is an approximate method and is applicable to two-way slab concrete floor systems that meet the stringent requirements of <u>ACI 318-14 (8.10.2)</u>. In many projects, however, these requirements limit the usability of the Direct Design Method significantly.

The Equivalent Frame Method (EFM) does not have the limitations of Direct Design Method. It requires more accurate analysis methods that, depending on the size and geometry can prove to be long, tedious, and time-consuming.

StucturePoint's <u>spSlab</u> software program solution utilizes the Equivalent Frame Method to automate the process providing considerable time-savings in the analysis and design of two-way slab systems as compared to hand solutions using DDM or EFM.

Finite Element Method (FEM) is another method for analyzing reinforced concrete slabs, particularly useful for irregular slab systems with variable thicknesses, openings, and other features not permissible in DDM or EFM. Many reputable commercial FEM analysis software packages are available on the market today such as <u>spMats</u>. Using FEM requires critical understanding of the relationship between the actual behavior of the structure and the numerical simulation since this method is an approximate numerical method. The method is based on several assumptions and the operator has a great deal of decisions to make while setting up the model and applying loads and boundary conditions. The results obtained from FEM models should be verified to confirm their suitability for design and detailing of concrete structures.

The following table shows a general comparison between the DDM, EFM and FEM. This table covers general limitations, drawbacks, advantages, and cost-time efficiency of each method where it helps the engineer in deciding which method to use based on the project complexity, schedule, and budget.

Structure Point

CONCRETE SOFTWARE SOLUTIONS

Applicable ACI 318-14 Limitations/Applicability			Concrete Slab Analy	vsis Method
318-14 Provision	Limitations/Applicability	DDM (Hand)	EFM (Hand//spSlab)	FEM (spMats)
8.10.2.1	Minimum of three continuous spans in each direction	Ø		
8.10.2.2	Successive span lengths measured center-to- center of supports in each direction shall not differ by more than one-third the longer span	Ø		
8.10.2.3	Panels shall be rectangular, with ratio of longer to shorter panel dimensions, measured center-to-center supports, not exceed 2.	V	Ø	
8.10.2.4	Column offset shall not exceed 10% of the span in direction of offset from either axis between centerlines of successive columns	V		
8.10.2.5	All loads shall be due to gravity only	V		
8.10.2.5	All loads shall be uniformly distributed over an entire panel (q_u)	Ø		
8.10.2.6	Unfactored live load shall not exceed two times the unfactored dead load	Ø		
8.10.2.7	For a panel with beams between supports on all sides, slab-to-beam stiffness ratio shall be satisfied for beams in the two perpendicular directions.	M		
8.7.4.2	Structural integrity steel detailing	N	V	V
8.5.4	Openings in slab systems	V	V	\checkmark
8.2.2	Concentrated loads	Not permitted	V	V
8.11.1.2	Live load arrangement (Load Patterning)	Not required	Required	Engineering judgment required based on modeling technique
R8.10.4.5*	Reinforcement for unbalanced slab moment transfer to column (M_{sc})	Moments @ support face	Moments @ support centerline	Engineering judgment required based on modeling technique
	Irregularities (i.e. variable thickness, non- prismatic, partial bands, mixed systems, support arrangement, etc.)	Not permitted	Engineering judgment required	Engineering judgment required
Complexity		Low	Average	Complex to very complex
Design time/c	costs	Fast	Limited	Unpredictable/Costly
Design Econo	omy	Conservative (see detailed comparison with spSlab output)	Somewhat conservative	Unknown - highly dependent on modeling assumptions: 1. Linear vs. non-linear 2. Isotropic vs non-isotropic 3. Plate element choice 4. Mesh size and aspect ratio 5. Design & detailing features
General (Drawbacks)		Very limited applications	Limited geometry	Limited guidance non-standard application (user dependent). Required significant engineering judgment
General (Advantages)		Very limited analysis is required	Detailed analysis is required or via software (e.g. spSlab)	Unlimited applicability to handle complex situations permissible b the features of the software used (e.g. spMats)