FINITE ELEMENT MESH DENSITY INFLUENCE ON spMats MODEL RESULTS

Structural engineers routinely ask us about the influence of mesh density on the results obtained from spMats models. In any Finite Element Analysis (FEA), individual finite elements can be visualized as small pieces of a structure and particular arrangements of these elements is known as a mesh. Mesh density in FEA is defined as the number of elements used in modeling a given structure. According to FEA theory, high density models (small element size and a fine mesh) yield results with higher accuracy but may take longer computing time compared to low density models (large element size and a coarse mesh). Computational power required increases exponentially with increase in mesh density and slows down the analysis. Therefore, it is not always practical or necessary to simply decrease the element size in order to increase accuracy.

spMats uses the Finite Element Method for the structural modeling and analysis of reinforced concrete slab floor or foundation systems. The slab is idealized as a mesh of rectangular elements interconnected at the corner nodes. The same mesh applies to the underlying soil with the soil stiffness concentrated at the nodes. Slabs of irregular geometry are idealized to conform to geometry with rectangular boundaries. Rectangular elements make it easy to define structured grids and make the model more space efficient and contribute to better solution convergence.

Parametric Study

To assess the influence of mesh density in spMats, a simple slab model using progressively decreasing element sizes was investigated and the corresponding results provided in this article.

3	8 9		242	243	244	245	246	247	248	249	250	251	252	253	264	255	258
	4	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
		209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224
		193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208
		177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192
		161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	178
		145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
		129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
1	2	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
		97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
		81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
		65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
		40	60	61	62	63	64	65	66	67	68	69	60	61	62	63	64
		33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
		17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
		1	2	з	4	6	6	7	8	9	10	11	12	13	14	15	16

Case 1: Concentrated load

Mat Foundation Plan Dimensions:8 ft x 8 ftMat Foundation Thickness:12 inApplied Load:75 kips concentrated at center acting downwards

Corner Nodes Central Node Element Number of Deflection Successive Deflection Successive Size (ft) **Elements** (in) **Difference** (%) (in) **Difference** (%) -0.14945 -0.17096 4x4 4 N/A N/A 2x2 16 -0.1496 0.1 -0.16775 1.87 1x1 64 -0.149730.08 -0.16230 3.24 256 -0.14977 ¹/₂X¹/₂ 0.02 -0.16677 2.75 ¹/₄X¹/₄ 1024 -0.14978 0.0067 -0.16671 0.036 Table 1 – Deflection convergence as a function of element size/mesh density

Case 2: Surface load

Mat Foundation Plan Dimensions:8 ft x 8 ftMat Foundation Thickness:12 inApplied Load:5 kips/ft² s

 $5 \text{ kips/ft}^2 \text{ surface area load acting downwards}$

Flomont	Number of	Corn	er Nodes	Central Node						
Size (ft)	Elements	Deflection (in)	Successive Difference (%)	Deflection (in)	Successive Difference (%)					
8x8	1	-0.61800	N/A	-0.618	N/A					
4x4	4	-0.60697	1.78	-0.629	1.78					
2x2	16	-0.61449	1.23	-0.6201	1.42					
1x1	64	-0.61707	0.42	-0.61848	0.26					
¹ / ₂ X ¹ / ₂	256	-0.61777	0.11	-0.61812	0.05					
¹ / ₄ X ¹ / ₄	1024	0.61794	0.02	-0.61803	0.01					
0.1x0.1	4096	0.61799	0.008	-0.618	0.004					
Table 2 – Deflection convergence as a function of element size/mesh density										

Table 2 – Deflection convergence as a function of element size/mes

Conclusions

- 1. Increasing mesh density (number of elements) improves the convergence of nodal deflections for concentrated and surface loads
- 2. The resulting deflections under concentrated loads converge slower than other nodes (case 1). When possible, large concentrated loads can be distributed over multiple nodes with smaller load magnitude or replaced completely with a surface load. This helps to even out the nodal displacements and corresponding soil pressures.
- 3. The resulting deflections under surface loads (case 2) converge faster than deflections under concentrated loads (case 1)
- 4. Slabs analyzed with FEA exhibit a cupping effect as the loaded slab corners deflect or lift slightly upwards. Cupping effect is more pronounced with a higher mesh density (increasing number of elements)
- 5. While there are no rules for selection, solution convergence within 1% can be reasonably achieved starting with elements size equal 10% of the slab least lateral dimension. The user can always try smaller sized elements to achieve higher convergence keeping in mind the practical usefulness of the result. Note that in tables 1 and 2 the resulting deflections with smaller elements are essentially the same from a structural foundation design point of view
- 6. The spMats manual and References below provide the user with additional background on using spMats and Finite Element Analysis methods to help prepare efficient models and enhance judgment to obtain best possible results.

References

- 1. Aparico, Christian. The best FEA Mesh Density For Accuracy and Speed 2013
- 2. Cook, Robert D., Malkus, David S., Plesha, Michael E. and Witt, Robert J. Concepts and Applications of Finite Element Analysis 2002
- 3. Cyprien. The Proper Mesh Density 2015
- 4. Kanapady, R., Bhatia S. K. and Tamma K. K. Determination of Initial Mesh Density for Finite Element Computations via Data Mining 2001
- 5. StructurePoint spMats v8.12 Software Manual