

Interaction Diagram for a Tied Square Concrete Column

Develop an interaction diagram for the concrete column shown in figure below. Determine 5 control points on the interaction diagram and compare of calculated values with exact values from the complete interaction diagram generated by spColumn software program.

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Design Data

f_c' = 4,000 psi

 $f_v = 60,000 \text{ psi}$

Solution

Use the traditional approach hand calculations to establish the interaction diagram for the column section shown in above by determining the following 5 points:

Point 1: Pure compression

Point 2: Bar stress near tension face of member equal to zero, $(f_s = 0)$

Point 3: Bar stress near tension face of member equal to $0.5f_v$ ($f_s = -0.5f_v$)

Point 4: Bar stress near tension face of member equal to f_y ($f_s = -f_y$)

Point 5: Pure bending

Structure Point

Point 1 (Pure compression):

$$\phi P_{n(max)} = 0.80 \phi A_g [0.85f'_c + \rho_g (f_y - 0.85f'_c)]$$

= 0.80 × 0.65 × 324[(0.85 × 4) + 0.0247 × (60 - (0.85 × 4))]
= 808.3 kips

Point 2 ($f_s = 0$):

Determine the Neutral Axis Depth, c

Given: $\varepsilon_s = 0$

Therefore, neutral axis depth, c is equal to effective depth, d and the tensile Force, T = 0

c = 15.56 in

a = 0.85 x 15.56 = 13.23 in

Concrete compressive block force

 $C_c = 0.85 f_c'ab$

 $C_c = 0.85 \times 4 \times 13.23 \times 18 = 809.68$ kips

Check whether compression reinforcement has yielded:

Strain in first top layer:

 $\frac{\varepsilon_{s1}'}{(c-d_1)} = \frac{0.003}{c}$

 $\frac{\varepsilon_{s1}}{(15.56 - 2.44)} = \frac{0.003}{15.56}$

 $\epsilon_{s1}' = 0.00253 > \epsilon_y = 0.00207 > \epsilon_t = 0.002$

Therefore, section is compression control. Use $\phi = 0.65$

First/top layer of compression reinforcement has yielded.

Compressive force, $C_{s1} = A_{s1}' \times (f_y - 0.85f_c')$

 $C_{s1} = 3 \times 1 \times (60 - 0.85 \times 4) = 169.8$ kips

Strain in Second layer of compression reinforcement;

 $\frac{\varepsilon_{s2}'}{(c-9)} = \frac{0.003}{c}$

 $\frac{\varepsilon_{\rm s2}'}{(15.56-9)} = \frac{0.003}{15.56}$

$$\epsilon_{s2}' = 0.00126 < \epsilon_{y} = 0.00207$$

Therefore, second layer of compression reinforcement has not yielded.

Compressive force, $C_{s2} = A_{s2}' (\epsilon_{s2}' E_s - 0.85 f_c')$

 $C_{s2} = 2 \times 1 \times (0.00126 \times 29000 - 0.85 \times 4) = 66.28$ kips

Strain on tension side

 $\varepsilon_s = 0$

Tensile force, T = 0

$$P_n = C_c + C_{s1} + C_{s2} - T$$

- $P_n = 809.68 + 169.8 + 66.28 0$
- $P_n = 1045.71$ kips

 $\phi P_n = 0.65 \text{ x } 1045.71 = 679.71 \text{ kips}$

Moment Capacity

Summing moments around the centroidal axis;

Structure Point CONCRETE SOFTWARE SOLUTIONS

$$M_{n} = C_{c} \times \left(\frac{h}{2} - \frac{a}{2}\right) + C_{s1} \times \left(\frac{h}{2} - d_{1}\right) + T \times \left(\frac{h}{2} - d_{1}\right)$$
$$M_{n} = 809.68 \times \left(\frac{18}{2} - \frac{13.23}{2}\right) + 169.8 \times \left(\frac{18}{2} - 2.44\right)$$
$$M_{n} = 3045 \text{ k-in} = 253.75 \text{ k-ft}$$

 $\phi M_n = 0.65 \text{ x } 253.75 = 164.94 \text{ k-ft}$

Point 3 ($f_s = -0.5f_y$):

Determine the Neutral Axis Depth, c

Given: $0.5 \varepsilon_y = \varepsilon_s$

 $\varepsilon_{s} = 0.5 \ge 0.00207 = 0.001035$

Using similar triangle;

 $\frac{\varepsilon_{\rm s}}{(\rm d-c)} = \frac{\varepsilon_{\rm cu}}{\rm c}$ $\frac{0.001305}{(15.56-\rm c)} = \frac{0.003}{\rm c}$ $0.001035 \,\rm c = (15.56-\rm c) \times 0.003$ $0.001035 \,\rm c = 0.04668 - 0.003 \rm c$ $\rm c = 11.57 \ in$

a = 0.85 x 11.57 = 9.834 in

Concrete compressive block force

 $C_c = 0.85 f_c'ab$

 $C_c = 0.85 \times 4 \times 9.834 \times 18 = 601.84$ kips

Checking whether compression reinforcement has yielded:

Strain in first top layer:

 $\frac{\varepsilon_{s1}'}{(c-d_1)} = \frac{0.003}{c}$

 $\frac{\varepsilon_{s1}}{(11.57 - 2.44)} = \frac{0.003}{11.57}$

 $\epsilon_{s1}{}'=0.00237 > \, \epsilon_y^{} = 0.00207 > \, \epsilon_t^{} = 0.002$

Therefore, section is compression control. Use $\phi = 0.65$

First/top layer of compression reinforcement has yielded.

Compressive force, $C_{s1} = A_{s1}'(f_y - 0.85f_c')$

 $C_{s1} = 3 \times 1 \times (60 - 0.85 \times 4) = 169.8$ kips

Strain in second layer of compression reinforcement;

$$\frac{\varepsilon_{s2}'}{(c-9)} = \frac{0.003}{c}$$

 $\frac{\varepsilon_{s2}'}{(11.57-9)} = \frac{0.003}{11.57}$

$$\epsilon_{s2}' = 0.00067 < \epsilon_v = 0.00207$$

Therefore, second layer of compression reinforcement has not yielded.

Compressive force, $C_{s2} = A_{s2}' (\varepsilon_{s2}' E_s - 0.85 f_c')$

$$C_{s2} = 2 \times 1 \times (0.00067 \times 29000 - 0.85 \times 4) = 32.06$$
 kips

Strain on tension side

 $\varepsilon_{s} = 0.001035$ (Calculated previously)

Tensile force, $T = A_s \varepsilon_s E_s$

 $T = 3 \times 1 \times 0.001035 \times 29000 = 90$ kips

$$P_n = C_c + C_{s1} + C_{s2} - T$$

 $P_n = 601.84 + 32.06 + 169.8 - 90$

 $P_n = 713.7 \text{ kips}$

 $\phi P_n = 0.65 \text{ x } 713.7 = 463.91 \text{ kips}$

Moment Capacity

Summing moments around the centroidal axis;

$$M_{n} = C_{c} \times \left(\frac{h}{2} - \frac{a}{2}\right) + C_{s1} \times \left(\frac{h}{2} - d_{1}\right) + T \times \left(\frac{h}{2} - d_{1}\right)$$
$$M_{n} = 601.84 \times \left(\frac{18}{2} - \frac{9.834}{2}\right) + 169.8 \times \left(\frac{18}{2} - 2.44\right) + 90 \times \left(\frac{18}{2} - 2.44\right)$$

 $M_n = 4161.6 \text{ k-in} = 346.75 \text{ k-ft}$

 $\phi M_n = 0.65 \text{ x } 346.75 = 225.39 \text{ k-ft}$

Point 4 ($\mathbf{f}_s = -\mathbf{f}_v$):

Determine the Neutral Axis Depth, c

Given: $\varepsilon_y = \varepsilon_s$ (Balanced condition)

At balanced condition, neutral axis depth is given by;

$$c_{b} = \frac{0.003}{0.003 + \frac{f_{y}}{E_{s}}} = \frac{0.003}{0.003 + 0.00207}$$

 $c_{b} = 9.21$ in

$$a_{b} = 0.85 \times 9.21 = 7.83$$
 in

Concrete compressive block force

 $C_c = 0.85 f_c'ab$

$$C_c = 0.85 \times 4 \times 7.83 \times 18 = 479.2$$
 kips

Checking whether compression reinforcement has yielded:

Strain in first top layer:

 $\frac{\varepsilon_{\rm s1}'}{(\rm c-d_1)} = \frac{0.003}{\rm c}$

 $\frac{\varepsilon_{s1}}{(9.21 - 2.44)} = \frac{0.003}{9.21}$

$$\epsilon_{s1}{}'=0.00221 > \, \epsilon_y \, = 0.00207 > \, \epsilon_t \, = 0.002$$

Therefore, section is compression control. Use $\phi = 0.65$

First/top layer of compression reinforcement has yielded.

Compressive force, $C_{s1} = A_{s1}'(f_y - 0.85f_c')$

 $C_{s1} = 3 \times 1 \times (60 - 0.85 \times 4) = 169.8$ kips

Strain in second layer of compression reinforcement;

$$\frac{\varepsilon_{s2}'}{(c-9)} = \frac{0.003}{c}$$

 $\frac{\varepsilon_{\rm s2}'}{(9.21-9)} = \frac{0.003}{9.21}$

$$\epsilon_{s2}' = 0.000068 < \epsilon_v = 0.00207$$

Therefore, second layer of compression reinforcement has not yielded.

Compressive force, $C_{s2} = A_{s2} \cdot \left(\epsilon_{s2} \cdot Es - 0.85 f_{c}^{'}\right)$

Since a = 7.83 in, second layer of reinforcement does not lie within the compression block zone. Therefore, above equation changes to the following:

$$C_{s2} = A_{s2}'(\varepsilon_{s2}' Es)$$

 $C_{s2} = 2 \times 1 \times (0.00068 \times 29000) = 3.94$ kips

Strain on tension side

Since, $\varepsilon_s = \varepsilon_s$ (Balanced condition)

Therefore, tensile reinforcement has yielded.

Tensile force, $T = A_s f_y$

 $T = 3 \times 1 \times 60 = 180 \text{ kips}$

$$P_n = C_c + C_{s1} + C_{s2} - T$$

 $P_n = 479.2 + 169.8 + 3.94 - 180 = 472.94$

 $\phi P_n = 0.65 \text{ x } 472.94 = 307.41 \text{ kips}$

Moment Capacity

Summing moments around the centroidal axis;

$$M_{n} = 479.2 \times \left(\frac{18}{2} - \frac{7.83}{2}\right) + 169.8 \times \left(\frac{18}{2} - 2.44\right) + 180 \times \left(\frac{18}{2} - 2.44\right)$$

 $M_n = 4731.42 \text{ k-in} = 394.29 \text{ k-ft}$

 $\phi M_n = 0.65 \text{ x } 394.29 = 256.29 \text{ k-ft}$

Point 5 (Pure Bending):

Use iterative procedure to determine ϕM_n

Try c = 4.0 in.

$$a = 0.85 \text{ x} 4 = 3.4 \text{ in}$$

Concrete compressive block force

 $C_c = 0.85 f_c'ab$

 $C_c = 0.85 \times 4 \times 3.4 \times 18 = 208.08$ kips

Strain on the tension side

Bottom layer in the tension zone

$$\varepsilon_{s1} = 0.003 \times \left(\frac{d-c}{c}\right) = 0.003 \times \left(\frac{15.56-4}{4}\right) = 0.00867$$

 $\epsilon_y = 0.00207 < \epsilon_{s1} = = 0.00867 > \epsilon_t = 0.005$

Therefore, section is tension control. Use $\phi = 0.9$

Therefore, bottom layer of tensile reinforcement has yielded.

$$T_1 = 3 \times 1 \times 60 = 180$$
 kips

Middle layer in the tension zone

$$\begin{split} \epsilon_{s2} &= 0.003 \times \left(\frac{h/2 - c}{c}\right) = 0.003 \times \left(\frac{9 - 4}{4}\right) = 0.00375\\ \epsilon_{v} &= 0.00207 < \epsilon_{s2} = = 0.00867 \end{split}$$

Therefore, middle layer of tensile reinforcement has yielded.

$$T_2 = 2 \times 1 \times 60 = 120$$
 kips

Strain on the compression side

$$\varepsilon_{s1}' = 0.003 \times \left(\frac{c - d_1}{c}\right) = 0.003 \times \left(\frac{4 - 2.44}{4}\right) = 0.0017$$

$$\epsilon_{s1}' = 0.0017 < \epsilon_y = 0.00207$$

Therefore, compression reinforcement has not yielded.

$$C_{s1} = A_{s1}' (\epsilon_{s1}' Es - 0.85 f_c')$$

 $C_{s1} = 2 \times 1 \times (0.0017 \times 29000 - 0.85 \text{ x4}) = 91.8 \text{ kips}$

Total tensile force, $T = T_1 + T_2$

T = 180 + 120 = 300 kips

Total compressive force, $C = C_c + C_{s1}$

C = 208.08 + 91.8 = 299.88 kips ≈ 300 kips

Since $T \approx C$, therefore, use c = 4.0 in

$$M_{n} = 208.08 \times \left(\frac{18}{2} - \frac{3.4}{2}\right) + 91.8 \times \left(\frac{18}{2} - 2.44\right) + 180 \times \left(\frac{18}{2} - 2.44\right)$$

 $M_n = 3302 \text{ k-in} = 275.17 \text{ k-ft}$

 $\phi M_n = 0.9 \ge 275.17 = 247.65 \text{ k-ft}$

CONCRETE SOFTWARE SOLUTIONS

Conclusions and Observations

As summarized in Table 1 below and plotted within the spColumn interaction diagram output, the hand-calculated control point values (red line) of the interaction diagram are in very good agreement with the control point values of the interaction diagram generated by spColumn Program (black line).

Table 1 – Comparison of spColumn and hand-calculated interaction diagram values			
Point	Parameter	Hand Calculated Values	spColumn Values (exact)
1: Pure Compression	ϕP_n (kips)	808.3	808.3
2: $f_s = 0$	ϕP_n (kips)	679.71	679.8
	ϕM_n (ft-kips)	164.94	164.99
3: $f_s = -0.5 f_y$	φP _n (kips)	463.91	463.8
	ϕM_n (ft-kips)	225.39	225.43
4: $f_s = -f_y$	ϕP_n (kips)	307.41	307.3
	ϕM_n (ft-kips)	259.21	259.2
5: Pure Bending	ϕM_n (ft-kips)	247.65	247.72

Main View

- 🗆 🗙

STRUCTUREPOINT - spColumn v5.10 (TM) Licensed to: StructurePoint. License ID: 00000-0000000-4-2A05D-2471B C:\TSDA-spColumn-Interaction Diagram-Control Points.col General Information: _____ File Name: C:\TSDA-spColumn-Interaction Diagram-Control Points.col Project: Interaction Dia Control Points Column: Interior Col Code: ACI 318-14 Engineer: SP Units: English Run Option: Investigation Slenderness: Not considered Run Axis: X-axis Column Type: Structural Material Properties: _____ Concrete: Standard Steel: Standard fy = 60 ksi Es = 29000 ksi f'c = 4 ksi = 3605 ksi Ec fc = 3.4 ksi Eps_yt = 0.00206897 in/in $Eps_u = 0.003 in/in$ Beta1 = 0.85Section: _____ Rectangular: Width = 18 in Depth = 18 in Gross section area, $Ag = 324 \text{ in}^2$ Ix = 8748 in^4 Iy = 8748 in^4 rx = 5.19615 in ry = 5.19615 in Yo = 0 in Xo = 0 in Reinforcement: _____ Bar Set: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) ---- --------- -----

 # 3
 0.38
 0.11
 # 4
 0.50
 0.20
 # 5
 0.63
 0.31

 # 6
 0.75
 0.44
 # 7
 0.88
 0.60
 # 8
 1.00
 0.79

 # 9
 1.13
 1.00
 # 10
 1.27
 1.27
 # 11
 1.41
 1.56

 # 14
 1.69
 2.25
 # 18
 2.26
 4.00
 10
 1.27

 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Layout: Rectangular Pattern: All Sides Equal (Cover to transverse reinforcement) Total steel area: As = 8.00 in^2 at rho = 2.47% Minimum clear spacing = 5.43 in 8 #9 Cover = 1.5 in Control Points: _____ Axial Load P X-Moment Y-Moment NA depth Dt depth eps_t Phi Bending about kip k-ft k-ft in in Bending about

 X @ Max compression
 1010.4
 -0.00
 0.00
 50.14
 15.56
 -0.00207
 0.650

 @ Allowable comp.
 808.3
 109.38
 0.00
 18.46
 15.56
 -0.00047
 0.650

 @ fs = 0.0
 679.8
 164.99
 0.00
 15.56
 15.56
 0.00000
 0.650

 @ fs = 0.5*fy
 463.8
 225.43
 0.00
 11.57
 15.56
 0.00103
 0.650

 @ Balanced point
 307.3
 256.30
 0.00
 9.21
 15.56
 0.00207
 0.650

 @ Tension control
 153.8
 306.74
 0.00
 5.84
 15.56
 0.00500
 0.900

 @ Pure bending
 0.0
 247.72
 0.00
 4.00
 15.56
 9.99999
 0.900

 @ Max tension
 -432.0
 -0.00
 0.00
 0.00
 15.56
 9.99999
 0.900

 -X @ Max compression
 @ Max compression
 1010.4
 -0.00
 -0.00
 50.14
 15.56
 -0.00207
 0.650

 @ Allowable comp.
 808.3
 -109.38
 -0.00
 18.46
 15.56
 -0.00047
 0.650

 @ fs = 0.0
 679.8
 -164.99
 -0.00
 15.56
 15.56
 -0.00000
 0.650

 @ fs = 0.5*fy
 463.8
 -225.43
 -0.00
 11.57
 15.56
 0.00103
 0.650

 @ Balanced point
 307.3
 -256.30
 -0.00
 9.21
 15.56
 0.00207
 0.650

 @ Tension control
 153.8
 -306.74
 -0.00
 5.84
 15.56
 0.00500
 0.900

 @ Pure bending
 0.0
 -247.72
 -0.00
 4.00
 15.56
 9.99999
 0.900

 @ Max tension
 -432.0
 -0.00
 0.00
 0.00
 15.56
 9.99999
 0.900
 Page 2

07/20/16

02:42 PM

*** End of output ***