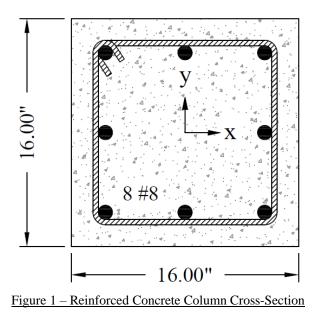


Biaxial Bending Interaction Diagrams for Square Reinforced Concrete Column Design (ACI 318-19)


Biaxial Bending Interaction Diagrams for Square Reinforced Concrete Column Design (ACI 318-19)

Biaxial bending of columns occurs when the loading causes bending simultaneously about both principal axes. The commonly encountered case of such loading occurs in corner columns. Corner and other columns exposed to known moments about each axis simultaneously should be designed for the combined effect of biaxial bending and axial load.

A uniaxial interaction diagram defines the load-moment strength along a single plane of a section under an axial load P and a uniaxial moment M. The biaxial bending resistance of an axially loaded column can be represented schematically as a surface formed by a series of uniaxial interaction curves drawn radially from the P axis. Data for these intermediate curves are obtained by varying the angle of the neutral axis (for assumed strain configurations) with respect to the major axes.

The difficulty associated with the determination of the strength of reinforced columns subjected to combined axial load and biaxial bending is primarily an arithmetic one. The bending resistance of an axially loaded column about a particular skewed axis is determined through iterations involving simple but lengthy calculations. These extensive calculations are compounded when optimization of the reinforcement or cross-section is sought.

This example demonstrates the determination of the design axial load capacity, ϕP_n , and the design ϕM_{nx} and ϕM_{ny} moments corresponding to the following case: The neutral axis position crosses the vertical axis of symmetry of the section (y-axis) at 10 in. below the top of the section, at an angle of 30° counterclockwise from the x-axis of the cross section. The figure below shows the reinforced concrete square column cross section in consideration. The calculated values of the column axial strength and biaxial bending strength are compared with the values from the reference and the exact values from <u>spColumn</u> engineering software program from <u>StructurePoint</u>. The steps to develop the three-dimensional failure surface (interaction diagram) using <u>spColumn</u> will be shown in detail as well.

Contents

1.	Concrete Column Biaxial Strength Calculations	. 4
	1.1. Location of Neutral Axis and Concrete Compression Force	. 5
	1.2. Strains and Forces Determination in Reinforcement Layers	. 6
	1.3. Calculation of P _n , M _{nx} and M _{ny}	.7
2.	Column Biaxial Bending Interaction Diagram – spColumn Software	. 8
3.	Summary and Comparison of Design Results	22
4.	Conclusions & Observations	23

Code

Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)

References

- Reinforced Concrete Mechanics and Design, 8th Edition, 2021, James Wight, Pearson, Example 11-5
- Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland Cement Association
- spColumn Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2021
- "Biaxial Bending Interaction Diagrams for Rectangular Reinforced Concrete Column Design (ACI 318-19)" Design Example, <u>STRUCTUREPOINT</u>, 2022
- "<u>Biaxial Bending Interaction Diagrams for C-Shaped Concrete Core Wall Design (ACI 318-19)</u>" Design Example, <u>STRUCTUREPOINT</u>, 2022
- "Biaxial Bending Interaction Diagrams for Spiral Reinforced Circular Concrete Column Design (ACI 318-19)" Design Example, <u>STRUCTUREPOINT</u>, 2022
- "<u>Manual Design Procedure for Columns and Walls with Biaxial Bending (ACI 318-11/14/19)</u>" Design Example, <u>STRUCTUREPOINT</u>, 2022

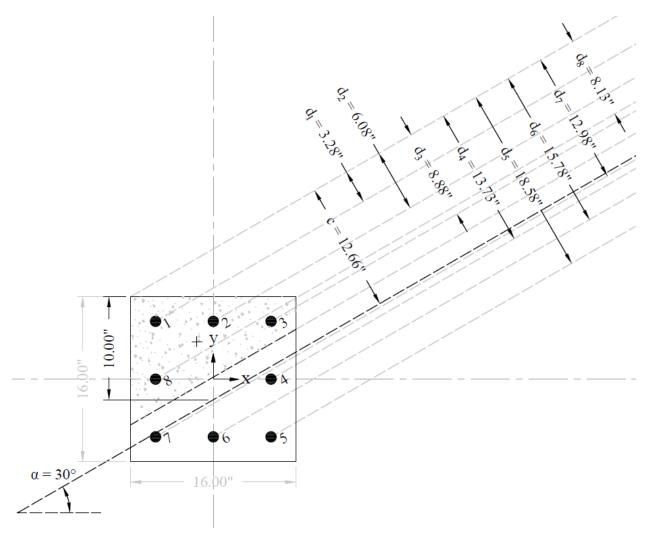
Design Data

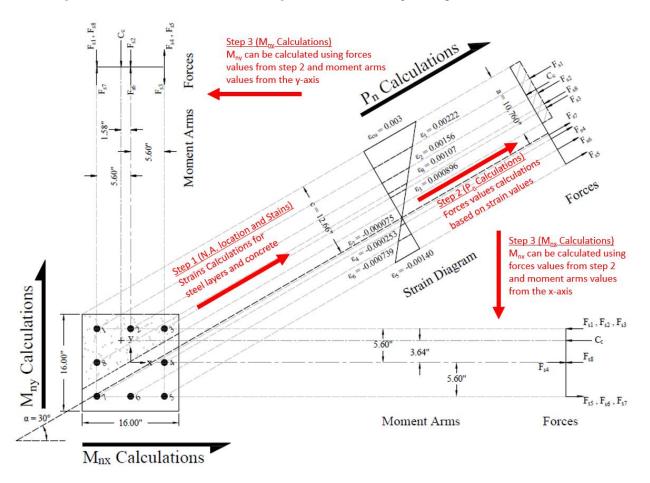
f_c ' = 4,000 psi

 $f_y = 60,000 \text{ psi}$

Cover = 2.4 in.

Column dimensions and reinforcement locations are shown in following figure.




Figure 2 - Reinforced Concrete Column Cross-Section and Reinforcement Locations

Solution

In a reinforced concrete column, the determination of the nominal axial load capacity, P_n , and the nominal M_{nx} and M_{ny} moments involves a trial-and-error process for calculating the neutral axis depth and angle α . The reference provided the neutral axis depth and angle as an input (The neutral axis position crosses the vertical axis of symmetry of the section at 10 in. leading to c = 12.66 in. and an angle of $\alpha = 30.0^{\circ}$) for illustration.

The steps to calculate biaxial flexural strength of a reinforced concrete column for a given nominal axial strength and moment ratio of biaxial bending moments is discussed in details in "<u>Biaxial Bending Interaction Diagrams for</u> <u>Rectangular Reinforced Concrete Column Design (ACI 318-19)</u>" design example.

<u>Figure 3 – Nominal Axial Load and Biaxial Flexural Strength Calculation Methods for a Reinforced</u> <u>Concrete Column.</u>

1. Concrete Column Biaxial Strength Calculations

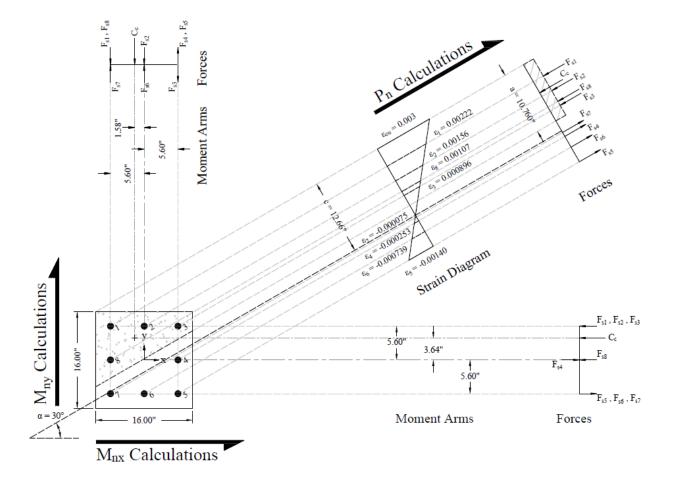


Figure 4 - Strains, Forces, and Moment Arms Diagram

1.1. Location of Neutral Axis and Concrete Compression Force

The trial-and-error process for calculating the neutral axis depth and angle α is not required in this example since these values are given by the reference (c = 12.66 in. and α = 30.0°). Where *c* is the distance from the fiber of maximum compressive strain to the neutral axis and α is the angle of the neutral axis.

ACI 318-19 (22.2.2.4.2)

$$\varepsilon_{y} = \frac{f_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207$$

$$\varepsilon_{s5} = (c - d_{5}) \times \frac{\varepsilon_{cu}}{c} = (12.66 - 18.578) \times \frac{0.003}{12.66} = -0.00140 \text{ (Tension)} < \varepsilon_{y} \rightarrow \text{reinforcement has not yielded}$$

$$\therefore \phi = 0.65 \qquad \underline{ACI \ 318-19 \ (Table \ 21.2.2)}$$

$$a = \beta_{1} \times c = 0.85 \times 12.66 = 10.761 \text{ in.}$$

$$\varepsilon_{cu} = 0.003 \qquad \underline{ACI \ 318-19 \ (22.2.2.1)}$$

Where:

a = Depth of equivalent rectangular stress block

$$\beta_1 = 0.85 - \frac{0.05 \times (f_c' - 4000)}{1000} = 0.85 - \frac{0.05 \times (4000 - 4000)}{1000} = 0.85 \qquad \underline{ACI 318-19 \ (Table \ 22.2.2.4.3)}$$

$$C_c = 0.85 \times f_c' \times A_{comp} = 0.85 \times 4000 \times 124.88 = 424.59 \text{ kip (Compression)}$$
 ACI 318-19 (22.2.2.4.1)

Where (see the following figure):

$$A_{comp} = A_1 + A_2 = (3.19 \times 16) + \left(\frac{1}{2} \times 9.24 \times 16\right) = 124.88 \text{ in.}^2$$

$$\overline{x} = \left(\frac{A_1 \times \overline{x_1} + A_2 \times \overline{x_2}}{A_1 + A_2}\right) - 8.00 = \left(\frac{51.04 \times 8.00 + 73.84 \times 5.33}{51.04 + 73.84}\right) - 8.00 = -1.58 \text{ in.}$$

$$\overline{y} = \left(\frac{A_1 \times \overline{y_1} + A_2 \times \overline{y_2}}{A_1 + A_2}\right) - 4.42 = \left(\frac{51.04 \times 10.825 + 73.84 \times 6.153}{51.04 + 73.84}\right) - 4.42 = 3.64 \text{ in.}$$

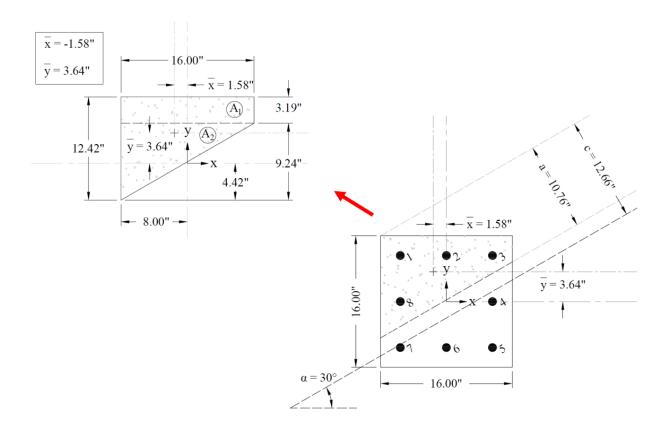


Figure 5 - Cracked Concrete Column Section Centroid Calculations

1.2. Strains and Forces Determination in Reinforcement Layers

The following shows the calculations of forces in the reinforcement layers with the extreme tension (at bar 5) and extreme compression (at bar 1) strains. The calculations for the rest of layers are shown the table at the end of this section.

For extreme tension reinforcement layer (at bar 5):

 $\varepsilon_{s5} = -0.00140$ (Tension) $< \varepsilon_{v} \rightarrow$ reinforcement has not yielded

: $f_{s5} = \varepsilon_{s5} \times E_s = -0.00140 \times 29000000 = -40669$ psi

 $F_{s5} = f_{s5} \times A_{s5} = -40669 \times (1 \times 0.79) = -32.13 \text{ kip}$ (Tension)

For extreme compression reinforcement layer (at bar 1):

$$\varepsilon_{s1} = (c - d_1) \times \frac{\varepsilon_{cu}}{c} = (12.66 - 3.278) \times \frac{0.003}{12.66} = 0.00222 \text{ (Compression)} > \varepsilon_y \rightarrow \text{reinforcement has yielded}$$

$$\therefore f_{s1} = f_y = 60000 \text{ psi}$$

The area of the reinforcement in this layer is included in the area used to compute C_c (a = 10.76 in. > d₁ = 3.28 in.). As a result, it is necessary to subtract $0.85f_c$ ' from f_{sl} before computing F_{sl} :

$$F_{s1} = f_{s1} \times A_{s1} = (60000 - 0.85 \times 4000) \times (1 \times 0.79) = 44.71 \text{ kip}$$
 (Compression)

The same procedure shown above can be repeated to calculate the forces in the remaining reinforcement locations, results are summarized in the following table:

			Table 1 - S	Strains, int	ernal force	resultants and Mom	ents		
Location	d, in.	ε, in./in.	fs, psi	Fs, kip	Cc, kip	Moment arm (x), in.	M _y , kip-ft	Moment arm (y), in.	M _x , kip-ft
Concrete		0.00300			424.59	1.58	55.90	3.64	128.79
Bar 1	3.278	0.00222	60000	44.71 [*]		5.60	20.87	5.60	20.87
Bar 2	6.078	0.00156	45232	33.05*		0.00	0.00	5.60	15.42
Bar 3	8.878	0.00090	25990	17.85^{*}		-5.60	-8.33	5.60	8.33
Bar 4	13.728	-0.00025	-7339	-5.8		-5.60	2.71	0.00	0.00
Bar 5	18.578	-0.00140	-40669	-32.13		-5.60	14.99	-5.60	14.99
Bar 6	15.778	-0.00074	-21427	-16.93		0.00	0.00	-5.60	7.90
Bar 7	12.978	-0.00008	-2185	-1.73		5.60	-0.81	-5.60	0.81
Bar 8	8.128	0.00107	31144	21.92*		5.60	10.23	0.00	0.00
Axial I	Force and I	Biaxial	P _n , kip		485.54	M _{ny} , kip-ft	95.56	M _{nx} , kip-ft	197.11
Bending	Bending Moments Capacities				315.60	φM _{ny} , kip-ft	62.12	φM _{nx} , kip-ft	128.12
* The area o computati		cement in this	layer has bee	en included	in the area ι	used to compute C_c . As	a result, 0.	$85f_c$ ' is subtracted from	f_s in the

1.3. Calculation of Pn, Mnx and Mny

 $\phi M_{nx} = \phi \times M_{nx} = 0.65 \times M_{nx}$

$$P_{n} = C_{c} + \sum F_{s} \qquad (+) = \text{Compression} \qquad (-) = \text{Tension}$$

$$\phi P_{n} = \phi \times P_{n} = 0.65 \times P_{n} \qquad (+) = \text{Counter Clockwise} \qquad (-) = \text{Clockwise} \qquad$$

7

2. Column Biaxial Bending Interaction Diagram – spColumn Software

<u>spColumn</u> is a StructurePoint software program that performs the analysis and design of reinforced concrete sections subjected to axial force combined with uniaxial or biaxial bending. Using the provisions of the Strength Design Method and Unified Design Provisions, slenderness considerations are used for moment magnification due to second order effect (P-Delta) for sway and non-sway frames.

For biaxial runs, the values of maximum compressive axial load capacity and maximum tensile load capacity are computed. These two values set the range within which the moment capacities are computed for a predetermined number of axial load values. For each level of axial load, the section is rotated in 10-degree increments from 0 degrees to 360 degrees and the M_x and M_y moment capacities are computed. Thus, for each level of axial load, an M_x - M_y contour is developed. Repeating this for the entire range of axial loads, the three-dimensional failure surface is computed. A three-dimensional visualization of the resulting entire nominal and factored failure surface is provided to support enhanced understanding of the section capacity.

The "**biaxial**" feature allows the user to investigate the P-M interaction diagrams, the M_x - M_y moment contour plots, as well as the 3D failure surface for even the most irregular column and shear wall sections quickly, simply, and accurately.

For this column section, we ran in investigation mode with "biaxial" option for "Run Axis" using the ACI 318-19. Structure Point CONCRETE SOFTWARE SOLUTIONS

) 🗁 🔡 🦻 Home	C,				spColumn - Comb	oined Axial Force	and Biaxial E	Bending - Sq	uare Column.colx					- 0	×
						Т	\bigcirc	7%		\wedge					6
iject Define					Section	<u>_</u> Slenderness	↓ Load	Tools	Solve	Diagrams	Tables	Reporter V) Display		දිටු Settin
-							Load	IOOIS	Solve	Diagrams	lables	Keporter	Display	viewports	Settin
PROJECT					Section - Irregula	ar									
✓ General															
Design code	AC	318-19	Ŧ												
Unit system	En	glish	*												
Bar set	AS	TM A615	*	>											
Confinement	Tie	ed .	*	>											
Section capacit	y Cri	itical capacity	*	(i)									+		
 Materials Strength, f'c - k 				~											
Strength, fy - k			4 60	>			- i ((
strength, ly - k	.51		00	/											
✓ Run Optio	ns														
Run Option			Ŧ												
Run Axis	Bia	axial	*												
Consider Slend	erness No	>	*							У					
										D		•	16:00 in		
	J					+			16.	00 in			+		
									10.						
Project Sq	uare Column	- Biaxial													
Column Co	rner														
Engineer SP															
	axial	Investigation	C	ored Loads							-	· + + ·	LD	- Units	Englisł
CI 318-19 Bi															

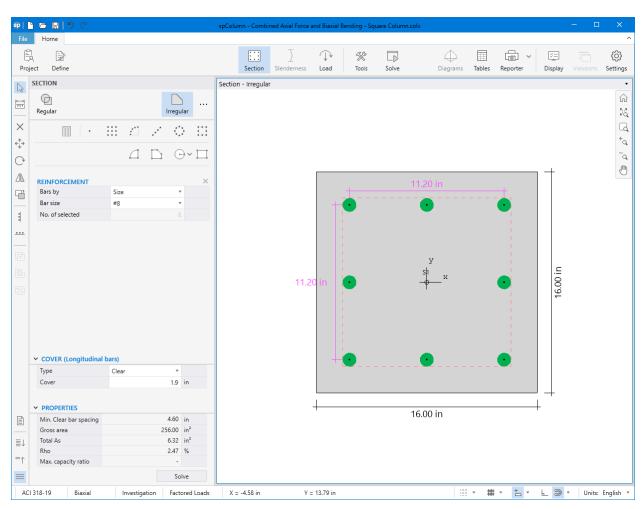


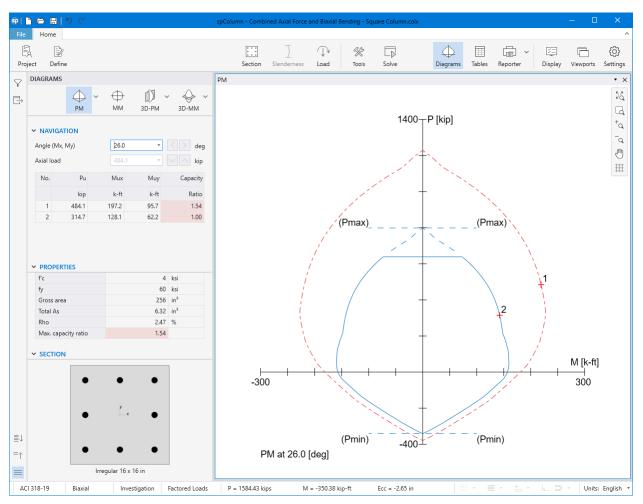
Figure 7 – spColumn Model Editor

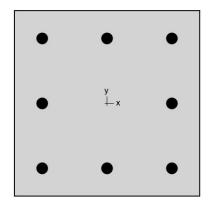
spcolumn

CONCRETE SOFTWARE SOLUTIONS

P Lo	ads					—	
.*	Loads Factored Loads	Factored	Loads				
1	Service Loads	+ New	X Delete ≡× Re	emove Duplicates		Import / Ex	port ·
Ĭ	Modes (No Loads) Axial Load Points	No.	Ρι	ı M(ux)	M(uy)		
	Control Points		kips		kip-ft		
			1 484.1 2 314.6				
			2 514.0	0 120.13	02.19		
	Positive Moment Loads						
	Muy						
	Mux						
	L interal						
	z y x						

Figure 8 – Defining Loads / Modes (spColumn)




Figure 9 – Column Section Interaction Diagram at 26° (spColumn)

spColumn v10.00 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright - 1988-2021, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: StructurePoint, LLC. License ID: 00000-000000-4-20FC1-20FC1

STRUCTUREPOINT - spColumn v10.00 (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 E\StructurePoint\spColumn\Combined Axial Force and Biaxial Bending - Square Column.colx	Page 2 6/27/2022 5:07 PM
Contents	
1. General Information	
2. Material Properties	
2.1. Concrete	
2.2. Steel	
3. Section	
3.1. Shape and Properties	3
3.2. Section Figure	4
3.3. Solids	
3.3.1. S1	4
4. Reinforcement	
4.1. Bar Set: ASTM A615	
4.2. Confinement and Factors	
4.3. Arrangement	5
4.4. Bars Provided	
5. Control Points	
6. Factored Loads and Moments with Corresponding Capacity Ratios	
7. Diagrams	
7.1. PM at θ=26 [deg]	
7.2. MM at P=484 [kip]	
7.3. MM at P=314.7 [kip] [User]	

List of Figures

Figure 1: Column section	. 4

Page | **3** 6/27/2022 5:07 PM

1. General Information

File Name	\Combined Axial Force and Biaxial Bending
Project	Square Column - Biaxial
Column	Corner
Engineer	SP
Code	ACI 318-19
Bar Set	ASTM A615
Units	English
Run Option	Investigation
Run Axis	Biaxial
Slenderness	Not Considered
Column Type	Structural
Capacity Method	Critical capacity

2. Material Properties

2.1. Concrete

Туре	Standard
f' _c	4 ksi
E₀ f₀	3605 ksi
f _c	3.4 ksi
ε _u	0.003 in/i
β1	0.85

2.2. Steel

Туре	Standard	
f _y	60	ksi
Es	29000	ksi
ε _{ty}	0.00206897	in/in

3. Section

3.1. Shape and Properties

Туре	Irregular
A _g	256 in ²
l _x	5461.33 in⁴
l _y	5461.33 in⁴
Г _х	4.6188 in
r _y	4.6188 in
A ₀ Ix Iy Fy X ₀ Y ₀	0 in
Y。	0 in

Page | 4 6/27/2022 5:07 PM

3.2. Section Figure

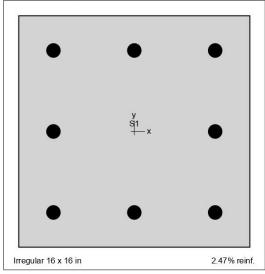


Figure 1: Column section

3.3. Solids

3.3.1. S1

Points	x	Y	Points	X	Y	Points	x	Y
	in	in		in	in		in	in
1	-8.0	8.0	2	-8.0	-8.0	3	8.0	-8.0
4	8.0	8.0						

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in²		in	in²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled φ, (b)	0.9
Compression controlled ϕ , (c)	0.65

Page | **5** 6/27/2022 5:07 PM

4.3. Arrangement

Pattern	Irregular			
Bar layout	2 			
Cover to	1.000			
Clear cover				
Bars				
Total steel area, A₅	6.32 in ²			
Rho	2.47 %			
Minimum clear spacing	4.60 in			

4.4. Bars Provided

Area	х	Y	Area	x	Y	Area	х	Y
in²	in	in	in²	in	in	in ²	in	in
0.79	-5.6	-5.6	0.79	-5.6	0.0	0.79	-5.6	5.6
0.79	0.0	-5.6	0.79	0.0	5.6	0.79	5.6	-5.6
0.79	5.6	0.0	0.79	5.6	5.6			

5. Control Points

About Point	Р	X-Moment	Y-Moment	NA Depth	d _t Depth	ε _t	¢
	kip	k-ft	k-ft	in	in		
X @ Max compression	798.3	0.00	0.00	43.82	13.60	-0.00207	0.65000
X @ Allowable comp.	638.6	75.39	0.00	16.37	13.60	-0.00051	0.65000
X @ f _s = 0.0	529.3	116.31	0.00	13.60	13.60	0.00000	0.65000
$X @ f_s = 0.5 f_y$	360.1	156.03	0.00	10.11	13.60	0.00103	0.65000
X @ Balanced point	237.2	176.14	0.00	8.05	13.60	0.00207	0.65000
X @ Tension control	100.7	204.44	0.00	5.06	13.60	0.00507	0.90000
X @ Pure bending	0.0	169.84	0.00	3.72	13.60	0.00797	0.90000
X @ Max tension	-341.3	0.00	0.00	0.00	13.60	9.99999	0.90000
Y @ Max compression	798.3	0.00	0.00	43.82	13.60	-0.00207	0.6500
Y @ Allowable comp.	638.6	0.00	75.39	16.37	13.60	-0.00051	0.6500
$Y @ f_s = 0.0$	529.3	0.00	116.31	13.60	13.60	0.00000	0.6500
Y @ $f_s = 0.5 f_v$	360.1	0.00	156.03	10.11	13.60	0.00103	0.6500
Y @ Balanced point	237.2	0.00	176.14	8.05	13.60	0.00207	0.6500
Y @ Tension control	100.7	0.00	204.44	5.06	13.60	0.00507	0.9000
Y @ Pure bending	0.0	0.00	169.84	3.72	13.60	0.00797	0.9000
Y @ Max tension	-341.3	0.00	0.00	0.00	13.60	9.99999	0.9000
-X @ Max compression	798.3	0.00	0.00	43.82	13.60	-0.00207	0.6500
-X @ Allowable comp.	638.6	-75.39	0.00	16.37	13.60	-0.00051	0.6500
-X @ f _s = 0.0	529.3	-116.31	0.00	13.60	13.60	0.00000	0.6500
$-X @ f_s = 0.5 f_v$	360.1	-156.03	0.00	10.11	13.60	0.00103	0.6500
-X @ Balanced point	237.2	-176.14	0.00	8.05	13.60	0.00207	0.6500
-X @ Tension control	100.7	-204.44	0.00	5.06	13.60	0.00507	0.9000
-X @ Pure bending	0.0	-169.84	0.00	3.72	13.60	0.00797	0.9000
-X @ Max tension	-341.3	0.00	0.00	0.00	13.60	9.99999	0.9000
-Y @ Max compression	798.3	0.00	0.00	43.82	13.60	-0.00207	0.6500
-Y @ Allowable comp.	638.6	0.00	-75.39	16.37	13.60	-0.00051	0.6500
-Y @ f _s = 0.0	529.3	0.00	-116.31	13.60	13.60	0.00000	0.6500
$-Y @ f_s = 0.5 f_v$	360.1	0.00	-156.03	10.11	13.60	0.00103	0.6500
-Y @ Balanced point	237.2	0.00	-176.14	8.05	13.60	0.00207	0.6500
-Y @ Tension control	100.7	0.00	-204.44	5.06	13.60	0.00507	0.9000
-Y @ Pure bending	0.0	0.00	-169.84	3.72	13.60	0.00797	0.9000
-Y @ Max tension	-341.3	0.00	0.00	0.00	13.60	9.99999	0.9000

STRUCTUREPOINT - spColumn v10.00 (TM)
Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1
E:\StructurePoint\spColumn\Combined Axial Force and Biaxial Bending - Square Column.colx

Page | **6** 6/27/2022 5:07 PM

6. Factored Loads and Moments with Corresponding Capacity Ratios NOTE: Calculations are based on "Critical Capacity" Method.

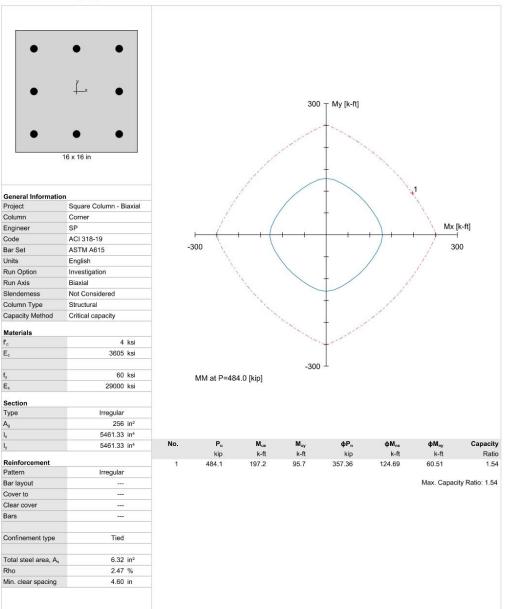
No.	Demand			Demand Capacity				Parameters at Capacity				
	Pu	Mux	Muy	φPn	φM _{nx}	φM _{ny}	NA Depth	٤	φ	Ratio		
	kip	k-ft	k-ft	kip	k-ft	k-ft	in					
1	484.11	197.16	95.67	357.36	124.69	60.51	13.40	0.00116	0.650	1.54	#	
2	314.68	128.15	62.19	314.68	128.15	62.19	12.64	0.00141	0.650	1.00	#	

Section capacity exceeded. Revise design!

Two factored loads are applied to locate the nominal (point 1) and design (point 2) capacities of the section. In both points, the capacity ratio is calculated based on the design capacity causing point 1 to show 54% beyond design capacity.

Page | **7** 6/27/2022 5:07 PM

7. Diagrams 7.1. PM at θ=26 [deg]


1. PM at θ=2	6 [deg]								
•	• • • • • • • • • • • • • • • • • • •				1400	0 P [kip]			
				1.1.1			1		
				(Pmax	<)		(Pmax)		
General Informatio				1	.1		N.		
Project	Square Column - Biaxial			1	1	· · ·		1	
Column	Corner		/	(/	+		Ŷ.	
Engineer	SP		1	/	/		1	1	
Code	ACI 318-19		j.	/				t	
Bar Set	ASTM A615		1	/		Ť		1	
Jnits	English		1				+2	1	
Run Option	Investigation		1				1	1	
Run Axis	Biaxial		1	/		T		1	
Slenderness	Not Considered			X.				/	61
Column Type	Structural		<u> </u>	1.	1 1		1 1	M [K-ILJ
Capacity Method	Critical capacity		-300	1	1 N	÷	11	30	0
			-300				1.1	50	0
Materials	4.1.2				1	+ /	1		
, c	4 ksi				" in	1.1			
Ξ	3605 ksi			(Design			(Denie)		
				(Pmir	n) -400) ⊥	(Pmin)		
fy	60 ksi		PM at 26.0 [[deg]					
E,	29000 ksi								
Section									
Туре	Irregular								
A ₉	256 in ²								
*9 *	5461.33 in4								
ly	5461.33 in ⁴	No.	Pu	Mux	Muy	φPn	φM _{nx}	φM _{ny}	Capacity
	2.01.00 11		kip	k-ft	k-ft	kip	k-ft	k-ft	Ratio
Reinforcement		1	484.1 314.7	197.2 128.1	95.7 62.2	357.36 314.68	124.69 128.15	60.51 62.19	1.54 1.00
Pattern	Irregular	2	314.7	120.1	02.2	514.00	120.10	02.15	1.00
Bar layout								Max. Capac	ity Ratio: 1.54
Cover to									10
Clear cover									
Bars									
Confinement type	Tied								
Fotal steel area, As	6.32 in ²								
Rho	2.47 %								
Min. clear spacing	4.60 in								

Page | 8 6/27/2022 5:07 PM

7.2. MM at P=484 [kip]

STRUCTUREPOINT - spColumn v10.00 (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-20FC1-20FC1 E:\StructurePoint\spColumn\Combined Axial Force and Biaxial Bending - Square Column.colx

Page | **9** 6/27/2022 5:07 PM

7.3. MM at P=314.7 [kip] [User]

•	• • • • • • • • • • • • • • • • • • •			and the second se	300	0 - My [k-ft]	No. of Street,		
	2014			1	/	+	``	1	
General Informatio Project	Square Column - Biaxial		1	/			2	1	
Column	Corner		1	/		+	*	1	
Engineer	SP		1	/			1	Mx [k-ft]
Code	ACI 318-19		⊢	+ <u>(</u>				I I I I I	
Bar Set	ASTM A615		300					/ 30	00
Units	English		1	1		+		1	
Run Option	Investigation		1		C			1	
Run Axis	Biaxial			1		+		1	
Slenderness	Not Considered			N.,			1		
Column Type	Structural			1		+	1		
Capacity Method	Critical capacity			1		Ť	1		
	Onical capacity				1	+	1		
Materials					1	1			
f'c	4 ksi								
Ec	3605 ksi								
	60 ksi				-300) ⊥			
fy Es	29000 ksi		MM at P=31	4.7 [kip]					
E _s	29000 KSI								
Section									
Туре	Irregular								
A _g	256 in ²								
l _x	5461.33 in4		_						
ly	5461.33 in4	No.	Pu	Mux	Muy	φP _n	φM _{nx}	фМ _{ny}	Capacity
Reinforcement		2	kip 314.7	k-ft 128.1	k-ft 62.2	kip 314.68	k-ft 128.15	k-ft 62.19	Ratio 1.00
Pattern	Irregular	2	314.7	120.1	02.2	514.00	120.10	02.15	1.00
Bar layout								Max. Capac	ty Ratio: 1.54
Cover to									
Clear cover									
Bars									
Confinement type	Tied								
	6.32 in ²								
Total steel area A									
Total steel area, A _s Rho	2.47 %								

3. Summary and Comparison of Design Results

Table 2 - Comparison of Results									
Parameter	Reference	Hand	<u>spColumn</u>						
c, in.	12.66	12.66	12.64						
d ₅ , in.	18.58	18.58	18.58						
ε_{s5} , in./in.	0.00140	0.00140	0.00141						
φP _n , kip	315.0	315.60	314.68						
φM _{nx} , kip-ft	128.33	128.12	128.15						
φM _{ny} , kip-ft	62.33	62.12	62.19						

In all of the hand calculations and the reference used illustrated above, the results are in good agreement with the automated exact results obtained from the <u>spColumn</u> program.

4. Conclusions & Observations

The analysis of the reinforced concrete section performed by <u>spColumn</u> conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility.

In most building design calculations, such as the examples shown for <u>flat plate</u> or <u>flat slab</u> concrete floor systems, all building columns may be subjected to biaxial bending (M_x and M_y) due to lateral effects and unbalanced moments from both directions of analysis. This requires an investigation of the column P-M_x-M_y interaction diagram in two directions simultaneously (axial force interaction with biaxial bending).

This example shows the calculations needed to obtain one point on the three-dimensional failure surface (biaxial M_x - M_y interaction diagram). Generating the three-dimensional failure surface (interaction diagram) for a column section subjected to a combined axial force and biaxial bending moments is tedious and challenging for engineers and the use of a computer aid can save time and eliminate errors. StucturePoint's <u>spColumn</u> program can, quickly, simply and accurately generate the three-dimensional failure surface (interaction diagram) for all commonly encountered column, beam or wall sections in addition to highly complex and irregular cross-sections.

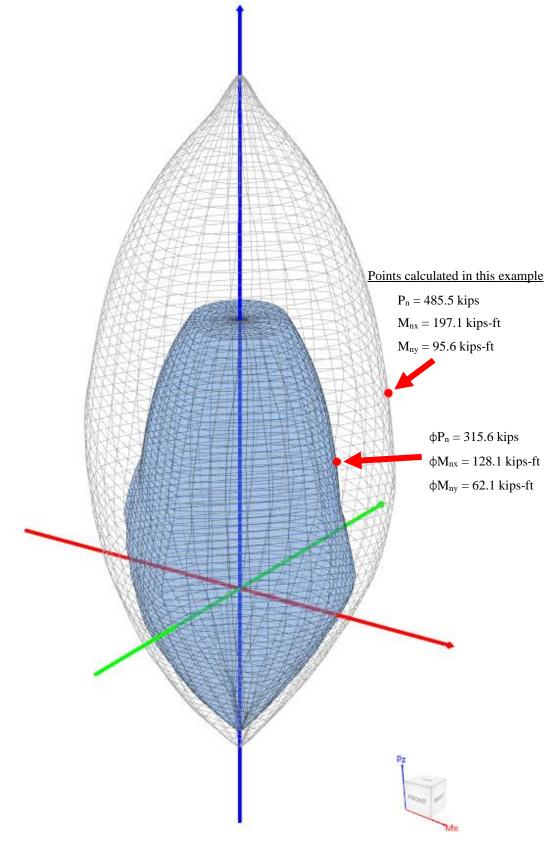


Figure 10 – Interaction Diagram in Two Directions (Biaxial) (spColumn)

The <u>spColumn</u> "Diagrams" module is a powerful tool especially for investigating interaction diagrams (failure surfaces) for columns and walls sections subjected to a combined axial force and biaxial bending moments. The module allows the user to view and analyze 2D interaction diagrams and contours along with 3D failure surfaces in a multi viewport environment. The following figure shows three views of:

- 1. P-M interaction diagram cut at angle of 26°
- 2. M_x-M_y interaction diagram cut at axial load of 314.7 kip in compression
- 3. A 3D failure surface (interaction diagram) showing the points calculated in this example.

Figures 12, 13, and 14 show 3D visualization of failure surface with a horizontal and vertical plane cut, respectively.

Structure Point CONCRETE SOFTWARE SOLUTIONS

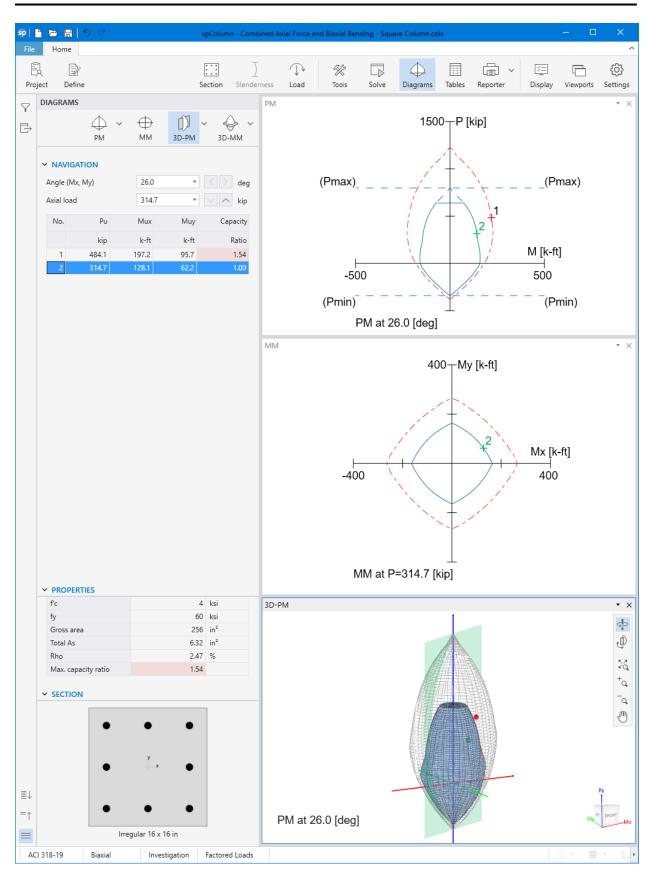


Figure 11 - Diagrams Module (spColumn)

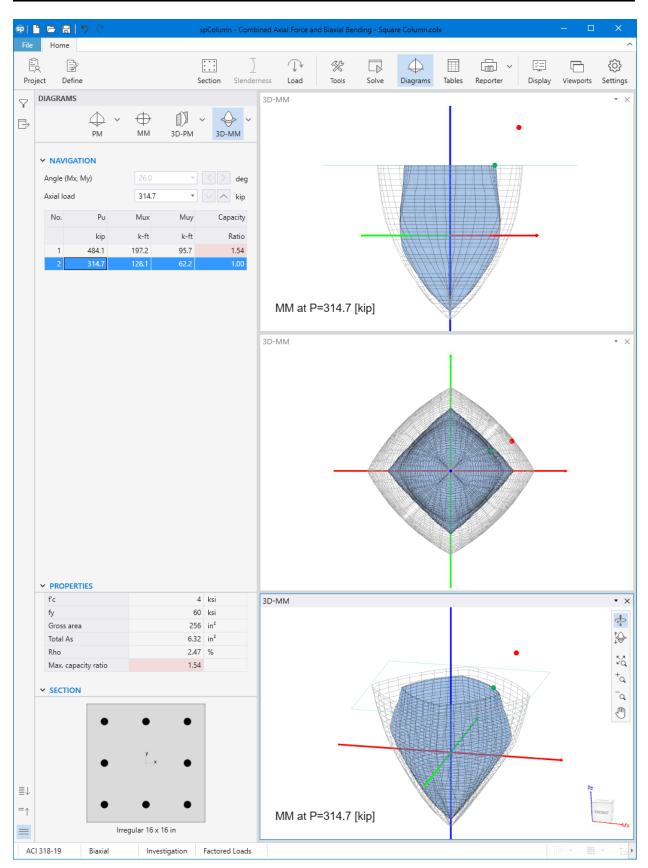


Figure 12 – 3D Visualization of Failure Surface with a Horizontal Plane Cut at P = 314.7 kip (spColumn)

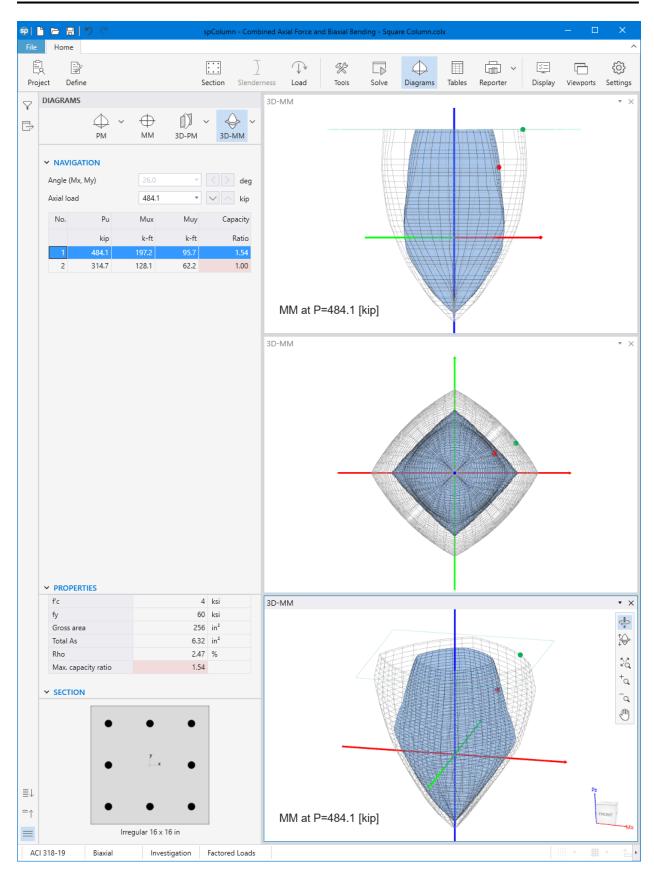


Figure 13 – 3D Visualization of Failure Surface with a Horizontal Plane Cut at P = 484.1 kip (spColumn)

CONCRETE SOFTWARE SOLUTIONS

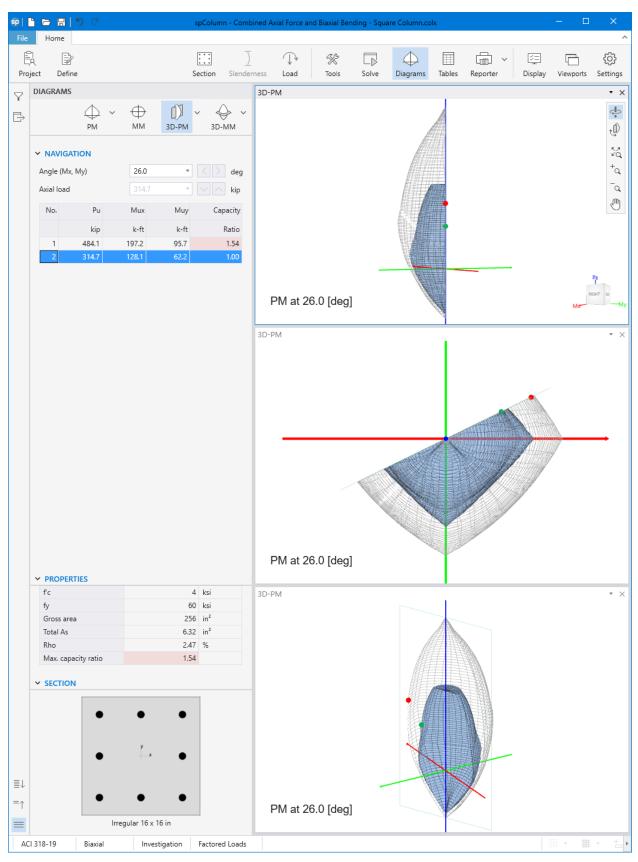


Figure 14 – 3D Visualization of Failure Surface with a Vertical Plane Cut at 26° (spColumn)