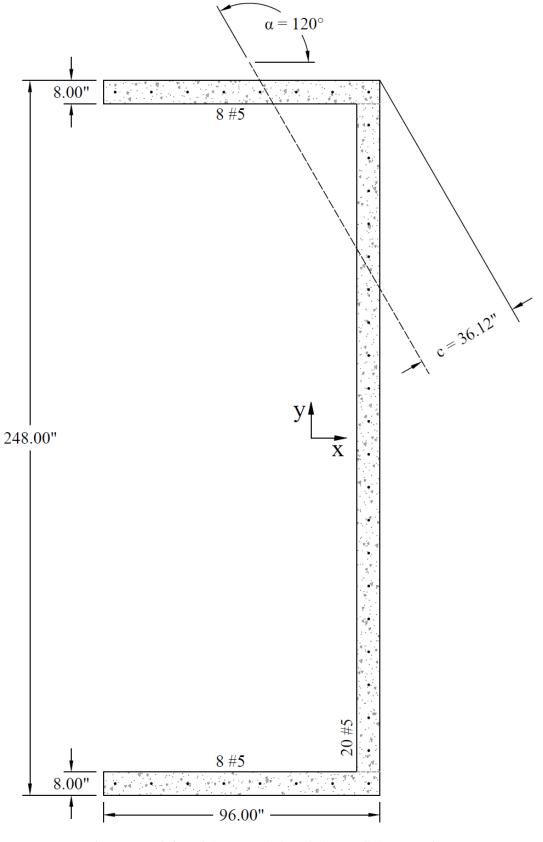


C-Shaped Concrete Core Wall Biaxial Bending Interaction Diagram (ACI 318-14)

C-Shaped Concrete Core Wall Biaxial Bending Interaction Diagram (ACI 318-14)

Biaxial bending of columns and walls occurs when the loading causes bending simultaneously about both principal axes. Columns and walls exposed to known moments about each axis simultaneously should be designed for biaxial bending and axial load.

A uniaxial interaction diagram defines the load-moment strength along a single plane of a section under an axial load P and a uniaxial moment M. The biaxial bending resistance of an axially loaded column or wall can be represented schematically as a surface formed by a series of uniaxial interaction curves drawn radially from the P axis. Data for these intermediate curves are obtained by varying the angle of the neutral axis (for assumed strain configurations) with respect to the major axes.


The difficulty associated with the determination of the strength of reinforced columns or walls subjected to combined axial load and biaxial bending is primarily an arithmetic one. The bending resistance of an axially loaded column or wall about a particular skewed axis is determined through iterations involving simple but lengthy calculations. These extensive calculations are compounded when optimization of the reinforcement or cross-section is sought.

This example demonstrates the determination of the design axial load capacity, ϕP_n , and the design ϕM_{nx} and ϕM_{ny} moments corresponding to the following case: The neutral axis depth of 36.12 in., at an angle of 120° counterclockwise from the x-axis of the cross section. The figure below shows the reinforced concrete C-shaped core wall cross section in consideration. We will compare the calculated values of the wall axial strength and biaxial bending strength with the exact values from <u>spColumn</u> engineering software program from <u>StructurePoint</u>. The steps to develop the three-dimensional failure surface (interaction diagram) using <u>spColumn</u> will be shown in detail as well.

This core has been extracted from the complete design example presented in Chapter 6 of "<u>Simplified Design of</u> <u>Reinforced Concrete Buildings</u>" book to provide lateral support of a multi-story building. Additional background information about the building geometry and loads can be found in the reference.

Contents

1.	C-Shaped Core Wall Biaxial Strength Calculations	6
	1.1. Neutral Axis Location and Concrete Compression Force	10
	1.2. Determination of Reinforcement Strains and Forces	12
	1.3. Calculation of ϕP_n , ϕM_{nx} and ϕM_{ny}	12
2.	C-Shaped Core Wall Biaxial Bending Interaction Diagram – spColumn Software	14
3.	Summary of Design Results	26
	3.1. Comparison of Results by Method	26
	3.2. spColumn Interaction Diagram Results Export	26
4.	Conclusions & Observations	29

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland Cement Association

Simplified Design of Reinforced Concrete Buildings, Fourth Edition, 2011 Portland Cement Association

spColumn Engineering Software Program Manual v6.50, StructurePoint, 2019

Design Data

 f_c ' = 4000 psi

 $f_y = 60000 \text{ psi}$

Wall geometry and reinforcement locations are shown in following figure.

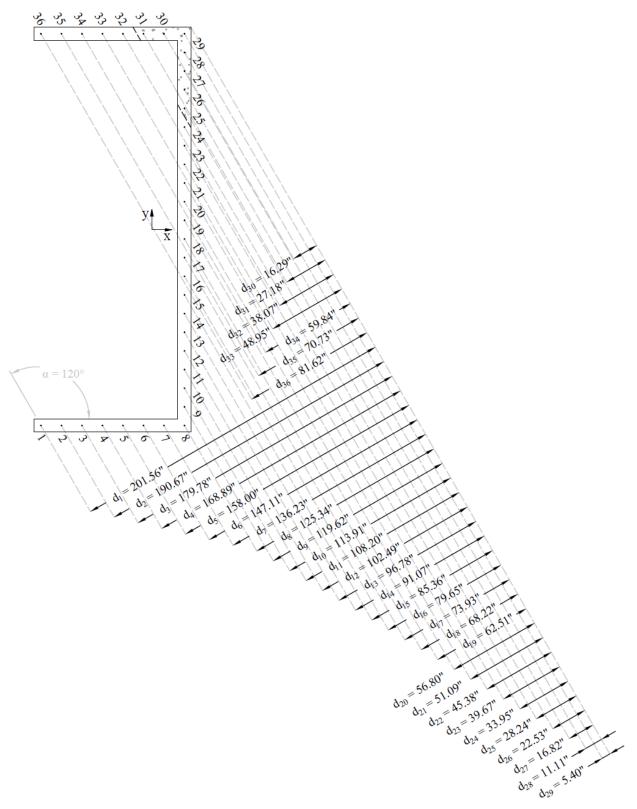


Figure 2 - C-Shaped Core Wall Cross-Section and Reinforcement Locations

Solution

In a reinforced concrete column or wall, the determination of the nominal axial load capacity, P_n , and the nominal M_{nx} and M_{ny} moments involves a trial-and-error process for calculating the neutral axis depth and angle α . In this example, the neutral axis depth and angle are provided as an input (c = 36.12 in. and an angle of α = 120°) for illustration.

The steps to calculate biaxial flexural strength of a reinforced concrete column or wall for a given nominal axial strength and moment ratio of biaxial bending moments is discussed in details in "<u>Combined Axial Force and</u> <u>Biaxial Bending Interaction Diagram - Rectangular Reinforced Concrete Column (ACI 318-14)</u>" design example.

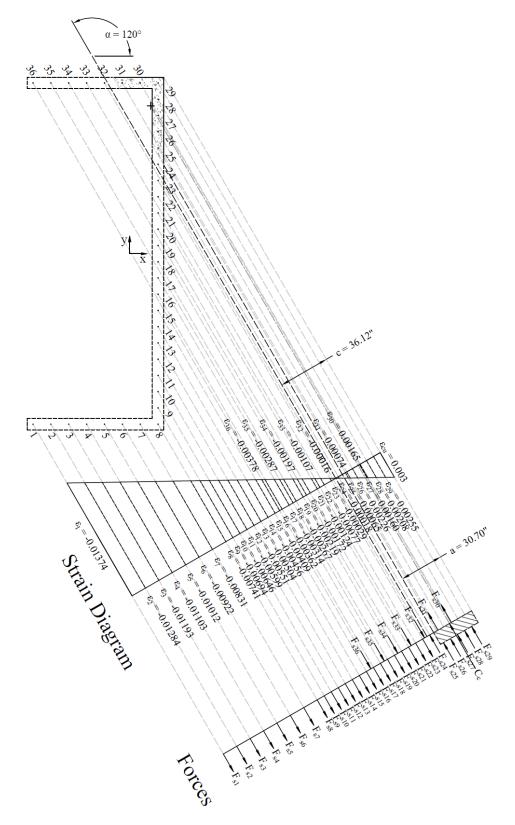
1. C-Shaped Core Wall Biaxial Strength Calculations

The following three figures display the section's strain diagram, internal forces and the corresponding moment arms in the necessary nomenclature to prepare for the strength calculations of each of the following:

• Design Axial Strength (ϕP_n)

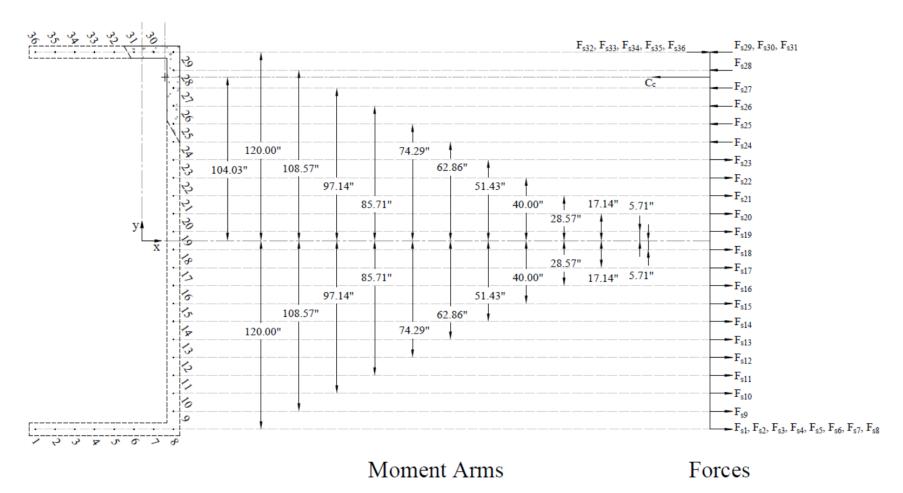
Figure 3 shows the strain diagram for the reinforcement and concrete based on the neutral axis location and angle values provided. The internal forces for the reinforcement and concrete compression block are calculated based on the strain values. ϕ is calculated based on the strain in the extreme tension reinforcement layer.

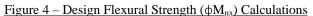
• Design Flexural Strength (ϕM_{nx})

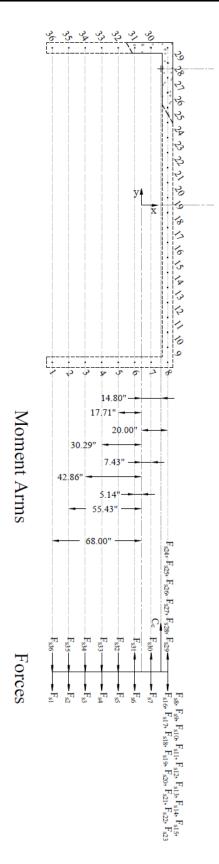

The flexural strength $\underline{\Phi}M_{nx}$ can be calculated using force values and moment arms from the x-axis (r_y) as shown in Figure 4.

• Design Flexural Strength (ϕM_{ny})

The flexural strength $\underline{\Phi}M_{ny}$ can be calculated using force values and moment arms from the y-axis (r_x) as shown in Figure 5.







<u>Figure 5 – Design Flexural Strength (ϕM_{ny}) Calculations</u>

1.1. Neutral Axis Location and Concrete Compression Force

The trial-and-error process for calculating the neutral axis depth and angle α is not required in this example since these values are given (c = 36.12 in. and α = 120°). Where *c* is the distance from the fiber of maximum compressive strain to the neutral axis and α is the angle of the neutral axis.

ACI 318-14 (22.2.2.4.2)

ACI 318-14 (Table 22.2.2.4.3)

$$\begin{split} \varepsilon_{y} &= \frac{f_{y}}{E_{s}} = \frac{60}{29,000} = 0.00207 \\ \varepsilon_{s1} &= (c - d_{1}) \times \frac{\varepsilon_{cu}}{c} = (36.12 - 201.56) \times \frac{0.003}{201.56} = -0.01374 \text{ (Tension)} > \varepsilon_{y} \rightarrow \text{reinforcement has yielded} \\ \varepsilon_{s1} &> 0.005 \\ \therefore \phi &= 0.90 \\ a &= \beta_{1} \times c = 0.85 \times 36.12 = 30.70 \text{ in.} \\ \varepsilon_{cu} &= 0.003 \\ \end{split}$$

Where:

a = Depth of equivalent rectangular stress block

$$\beta_1 = 0.85 - \frac{0.05 \times \left(f_c^{'} \times 4000\right)}{1000} = 0.85 - \frac{0.05 \times \left(4000 - 4000\right)}{1000} = 0.85 \qquad \underline{ACI \ 318-14 \ (Table \ 22.2.2.4.3)}$$

$$C_c = 0.85 \times f_c \times A_{comp} = 0.85 \times 4000 \times 124.88 = 424.59 \text{ kip} \text{ (Compression)}$$

ACI 318-14 (22.2.2.4.1)

Calculate the area of the section subject to compression and its centroid by examining the four sub segments as shown in the following figure:

$$A_{1} = \frac{13.87 \times 8.00}{2} = 55.48 \text{ in.}^{2} \qquad A_{2} = 39.57 \times 8.00 = 316.56 \text{ in.}^{2}$$

$$A_{3} = 8.00 \times (35.45 - 4.62) = 246.64 \text{ in.}^{2} \qquad A_{4} = \frac{8.00 \times 4.62}{2} = 18.48 \text{ in.}^{2}$$

$$\overline{x_{1}} = \frac{8.00}{3} = 2.67 \text{ in.} \qquad \overline{x_{2}} = \frac{8.00}{2} = 4.00 \text{ in.}$$

$$\overline{x_{3}} = \frac{(35.45 - 4.62)}{2} = 15.42 \text{ in.} \qquad \overline{x_{4}} = (35.45 - 4.62) + \frac{4.62}{3} = 32.37 \text{ in.}$$

$$\overline{y_{1}} = 8.00 + 39.57 + \frac{13.87}{3} = 55.48 \text{ in.} \qquad \overline{y_{2}} = 8.00 + \frac{39.57}{2} = 27.79 \text{ in.}$$

$$\overline{y_{3}} = \frac{8.00}{2} = 4.00 \text{ in.} \qquad \overline{y_{4}} = \frac{8.00}{2} = 4.00 \text{ in.}$$

$$A_{comp} = A_1 + A_2 + A_3 + A_4 = 637.12 \text{ in.}^2$$

$$\overline{x} = \left(\frac{A_1 \times \overline{x_1} + A_2 \times \overline{x_2} + A_3 \times \overline{x_3} + A_4 \times \overline{x_4}}{A_1 + A_2 + A_3 + A_4}\right) - \overline{X} = 14.80 \text{ in.}$$
$$\overline{y} = \left(\frac{A_1 \times \overline{y_1} + A_2 \times \overline{y_2} + A_3 \times \overline{y_3} + A_4 \times \overline{y_4}}{A_1 + A_2 + A_3 + A_4}\right) - \overline{Y} = 107.03 \text{ in.}$$

Note that \overline{X} and \overline{Y} are the coordinates of the centroid of the entire cross-section (uncracked core wall section).

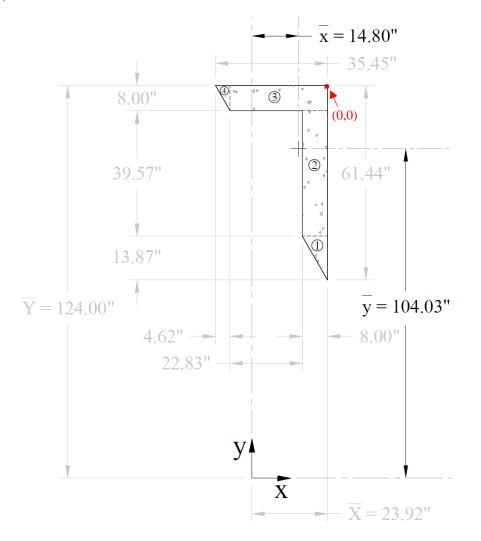


Figure 6 - Cracked Concrete Wall Section Centroid Calculations

1.2. Determination of Reinforcement Strains and Forces

The following shows the calculations of forces in the reinforcement layers with the extreme tension (at bar 1) and extreme compression (at bar 29) strains. The calculations for the rest of layers are shown the table at the end of this section.

For extreme tension reinforcement layer (at bar 1):

 $\varepsilon_{s_1} = -0.01374$ (Tension) $< \varepsilon_y \rightarrow$ reinforcement has yielded

 $\therefore f_{s1} = f_y = -60000 \text{ psi}$

 $F_{s1} = f_{s1} \times A_{s1} = -60000 \times (1 \times 0.31) = -18.60 \text{ kip}$ (Tension)

For extreme compression reinforcement layer (at bar 29):

$$\varepsilon_{s_{29}} = (c - d_{29}) \times \frac{\varepsilon_{cu}}{c} = (33.43 - 5.40) \times \frac{0.003}{33.43} = 0.00255 \text{ (Compression)} > \varepsilon_y \rightarrow \text{reinforcement has yielded}$$

 $\therefore f_{s29} = f_y = 60000 \text{ psi}$

The area of the reinforcement in this layer is included in the area used to compute C_c (a = 30.70 in. > d₂₉ = 5.40 in.). As a result, it is necessary to subtract $0.85f_c$ ' from f_{s29} before computing F_{s29} :

$$F_{s29} = f_{s29} \times A_{s29} = (60000 - 0.85 \times 4000) \times (1 \times 0.31) = 17.55 \text{ kip}$$
 (Compression)

The same procedure shown above can be repeated to calculate the forces in the remaining reinforcement locations, results are summarized in the table shown in the next page.

1.3. <u>Calculation of ϕP_n , ϕM_{nx} and ϕM_{ny} </u>

$$P_{n} = C_{c} + \sum F_{s} \qquad (+) = \text{Compression} \qquad (-) = \text{Tension}$$

$$\phi P_{n} = \phi \times P_{n} = 0.65 \times P_{n} \qquad (+) = \text{Counter Clockwise} \qquad (-) = \text{Clockwise} \qquad$$

				,		iltants and Mome			
Location	d, in.	ε, in./in.	fs, psi	Fs, kip	Cc, kip	r _x , in.	M _y , kip-ft	r _y , in.	M _x , kip-ft
Concrete		0.003			2166.2	14.8	2671.6	104.0	18778.
Bar 1	201.56	-0.01374	-60000.0	-18.6		-68.0	105.4	-120.0	186.
Bar 2	190.67	-0.01284	-60000.0	-18.6		-55.4	85.9	-120.0	186.
Bar 3	179.78	-0.01193	-60000.0	-18.6		-42.9	66.4	-120.0	186.
Bar 4	168.89	-0.01103	-60000.0	-18.6		-30.3	46.9	-120.0	186.
Bar 5	158.00	-0.01012	-60000.0	-18.6		-17.7	27.5	-120.0	186.
Bar 6	147.11	-0.00922	-60000.0	-18.6		-5.2	8.0	-120.0	186.
Bar 7	136.23	-0.00831	-60000.0	-18.6		7.4	-11.5	-120.0	186.
Bar 8	125.34	-0.00741	-60000.0	-18.6		20.0	-31.0	-120.0	186.
Bar 9	119.62	-0.00694	-60000.0	-18.6		20.0	-31.0	-108.6	168.
Bar 10	113.91	-0.00646	-60000.0	-18.6		20.0	-31.0	-97.1	150.
Bar 11	108.20	-0.00599	-60000.0	-18.6		20.0	-31.0	-84.7	131.
Bar 12	102.49	-0.00551	-60000.0	-18.6		20.0	-31.0	-74.3	115.
Bar 13	96.78	-0.00504	-60000.0	-18.6		20.0	-31.0	-63.2	98.
Bar 14	91.07	-0.00456	-60000.0	-18.6		20.0	-31.0	-51.4	79.
Bar 15	85.36	-0.00409	-60000.0	-18.6		20.0	-31.0	-40.0	62.
Bar 16	79.65	-0.00362	-60000.0	-18.6		20.0	-31.0	-28.6	44.
Bar 17	73.93	-0.00314	-60000.0	-18.6		20.0	-31.0	-17.1	26.
Bar 18	68.22	-0.00267	-60000.0	-18.6		20.0	-31.0	-5.7	8.
Bar 19	62.51	-0.00219	-60000.0	-18.6		20.0	-31.0	5.7	-8.
Bar 20	56.80	-0.00172	-49810.6	-15.4		20.0	-25.7	17.1	-22.
Bar 21	51.09	-0.00124	-36057.3	-11.2		20.0	-18.6	28.6	-26.
Bar 22	45.38	-0.00077	-22304.0	-6.9		20.0	-11.5	40.0	-23.
Bar 23	39.67	-0.00029	-8550.7	-2.7		20.0	-4.4	51.4	-11.
Bar 24	33.95	0.00018	5226.7	1.6		20.0	2.7	62.9	8.
Bar 25*	28.24	0.00065	18980.0	4.8		20.0	8.1	74.3	29.
Bar 26 [*]	22.53	0.00113	32733.4	9.1		20.0	15.2	85.7	64.
Bar 27 [*]	16.82	0.00160	46486.7	13.4		20.0	22.3	97.1	108.
Bar 28 [*]	11.11	0.00208	60000.0	17.6		20.0	29.3	108.6	158.
Bar 29*	5.40	0.00255	60000.0	17.6		20.0	29.3	120.0	175.
Bar 30*	16.29	0.00165	47763.3	13.8		7.4	8.5	120.0	137.
Bar 31*	27.18	0.00074	21533.2	5.6		-5.2	-2.4	120.0	56.
Bar 32	38.07	-0.00016	-4696.8	-1.5		-17.7	2.2	120.0	-14.
Bar 33	48.95	-0.00107	-30902.8	-9.6		-30.3	24.2	120.0	-95.
Bar 34	59.84	-0.00197	-57132.9	-17.7		-42.9	63.3	120.0	-177.
Bar 35	70.73	-0.00287	-60000.0	-18.6		-55.4	85.9	120.0	-186.
Bar 36	81.62	-0.00378	-60000.0	-18.6		-68.0	105.4	120.0	-186.
	Force and E		P _n , kip		1794.1	M _{ny} , kip-ft	2961.6	M _{nx} , kip-ft	21139.
	Moments C		φP _n , kip		1614.7	φM _{ny} , kip-ft	2665.5	φM _{nx} , kip-ft	19025.

2. C-Shaped Core Wall Biaxial Bending Interaction Diagram – spColumn Software

<u>spColumn</u> program performs the analysis of the reinforced concrete section conforming to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility. For this core wall section, we ran spColumn in investigation mode with "<u>biaxial</u>" option for "Run Axis" using the ACI 318-14 standard.

For biaxial runs, the values of maximum compressive axial load capacity and maximum tensile load capacity are computed. These two values set the range within which the moment capacities are computed for a predetermined number of axial load values. For each level of axial load, the section is rotated in 10-degree increments from 0 degrees to 360 degrees and the M_x and M_y moment capacities are computed. Thus, for each level of axial load, an M_x - M_y contour is developed. Repeating this for the entire range of axial loads, the three-dimensional failure surface is computed. A three-dimensional visualization of the resulting entire nominal and factored failure surface is provided to support enhanced understanding of the section capacity.

The "**biaxial**" feature allows the user to investigate the P-M interaction diagrams, the M_x - M_y moment contour plots, as well as the 3D failure surface for irregular shaped column, beam, and wall sections quickly, simply, and accurately.

In lieu of using program shortcuts, <u>spColumn</u> model editor was used to place the reinforcement and define the cover to illustrate handling of irregular shapes and unusual bar arrangement. Alternatively, an AutoCad model can be used to import the section information directly into <u>spColumn</u> using DXF file format.

×

spColumn - Combined Axial Force and Biax	al Bending - C-Shaped Shear Core Wall.col — 🛛
File Input Solve View Options Help	
	M FFFFF FSCAR # #4445% F\$FF #67 850
	General Information X Labels Project C-Shaped Shear Core Wall Engineer: Shear Wall SP
y '	Design Code
+× [ACI 318-14
	Units English Metric Run Axis About X-Axis About Y-Axis About Y-Axis
· · · · · · · ·	
96 x 248 in 0.33% reinf.	Consider slenderness? (Yes (No
MATERIAL: ====================================	OK Cancel Material Properties X
SECTION:	Concrete Reinforcing Steel
Ag = 3392 in ² 2 kx = 3.04514e+007 in ³ 4 ly = 2.81666e+006 in ³ 4 Xo = 0 in Yo = 0 in	Strength, fc: 4 ksi Strength, fy: 60 ksi Image: Standard Image: Standard Image: Standard Image: Standard Elasticity, Ec: 3605 ksi Elasticity, Es: 29000 ksi
REINFORCEMENT:	Max stress, fc: 3.4 ksi
36 #5 bars @ 0.329% As = 11.16 in [•] 2 Confinement: Tied Clear Cover = N/A Min Clear Spacing = 10.80 in	Beta(1): 0.85 Compression-controlled strain limit. Ultimate strain: 0.003 Eps_yt: 0.00206897
SLENDERNESS:	OK Cancel
Biaxial; ACI 318-14; Investigation	Irregular Section - input an irregularly-thaped section (polygon) using spSection.

Figure 7 – Generating spColumn Model

Main View Save Discard Undo Redo & exit General	Mirror X Delete		Rectangl	 Circle Combine	•	Linear	Re Ci		Cover	P Add	, 1	
Options					-		-					
Reinforcement												2 4
 Bar size Bar area [in²] 	#5 *											
Cover (Longitudinal bars)												X
Cover [in]	4.000											0
Clear • To bar center												+ -
Bar spacing								•				2
Number of bars	20 📫											- 5 H H L
Bar spacing [in]												1
Commands												1
Start point												
X [in]	-61.000							•				
Y [in]	-124.000											
								•				
							y					
						-	×					
								•				
									•			
								•				
								•	1			
											* *	,
								•			TOP	4
										1	-	→ X

Figure 8 – spColumn Model Editor

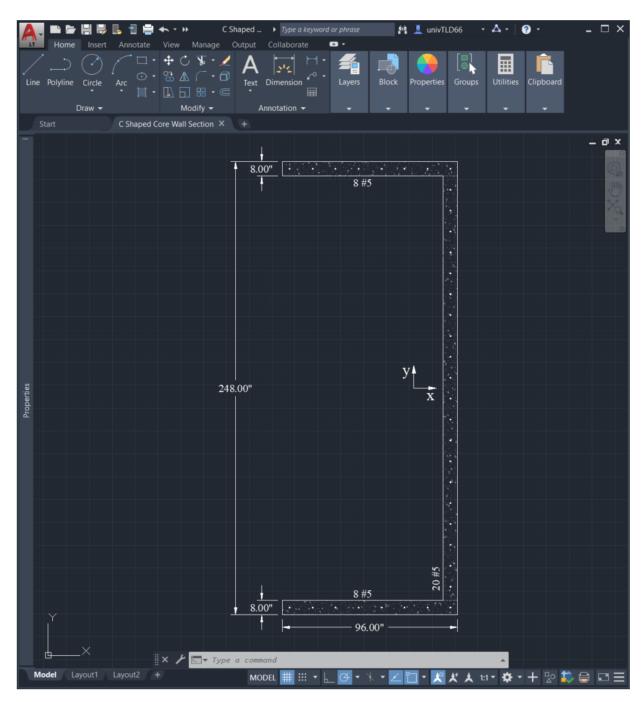
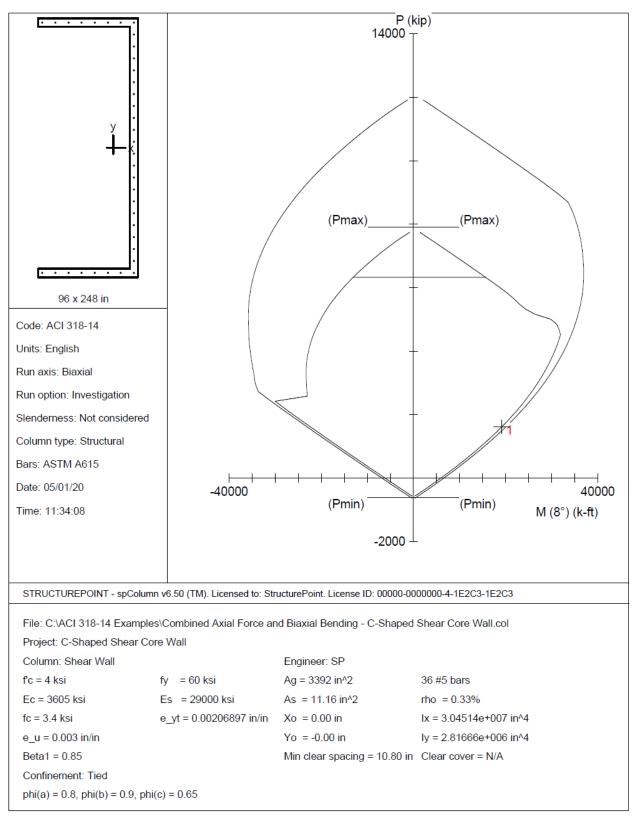
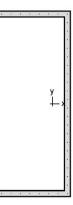


Figure 9 - spColumn_DXF file Import from AutoCad




Figure 10 - Core Wall Interaction Diagram at 8° (spColumn)

spColumn v6.50 Computer program for the Strength Design of Reinforced Concrete Sections Copyright - 1988-2020, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: StructurePoint. License ID: 00000-000000-4-1E2C3-1E2C3

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-1E2C3-1E2C3 C:\ACI 318-14 Examples\Combined Axial Force and Biaxial Bending - C-Shaped Shear Core Wall.col	Page 2 5/1/2020 11:34 AM
Contents	
1. General Information	
2. Material Properties	
2.1. Concrete	
2.2. Steel	
3. Section	
3.1. Shape and Properties	
3.2. Section Figure	
3.3. Exterior Points	
4. Reinforcement	4
4.1. Bar Set: ASTM A615	
4.2. Confinement and Factors	
4.3. Arrangement	5
4.4. Bars Provided	5
5. Factored Loads and Moments with Corresponding Capacity Ratios	
6. Diagrams	6
6.1. PM at θ=8 [deg]	6
6.2. MM at P=1615 [kip]	7

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-1E2C3-1E2C3 C:\ACI 318-14 Examples\Combined Axial Force and Biaxial Bending - C-Shaped Shear Core Wall.col Page | **3** 5/1/2020 11:34 AM

1. General Information

File Name	\Combined Axial Force and Biaxial Bending		
Project	C-Shaped Shear Core Wall		
Column	Shear Wall		
Engineer	SP		
Code	ACI 318-14		
Bar Set	ASTM A615		
Units	English		
Run Option	Investigation		
Run Axis	Biaxial		
Slenderness	Not Considered		
Column Type	Structural		
Capacity Method	Moment capacity		

2. Material Properties

2.1. Concrete

Туре	Standard			
f' _c	4 ks	si		
Ec	3605 ks	si		
f _c	3.4 ks	si		
ε _u	0.003 in	/in		
β1	0.85			

2.2. Steel

Туре	Standard	
f _y	60	ksi
Es	29000	ksi
ε _{yt}	0.00206897	in/in

3. Section

3.1. Shape and Properties

Туре	Irregular	
Ag	3392	in²
A _g I _x	3.04514e+007	in4
l _y r _x	2.81666e+006	in4
r _x	94.7492	in
r _y	28.8164	in
r _y X _o Y _o	0	in
Yo	0	in

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-1E2C3-1E2C3 C:\ACI 318-14 Examples\Combined Axial Force and Biaxial Bending - C-Shaped Shear Core Wall.col Page | 4 5/1/2020 11:34 AM

3.2. Section Figure

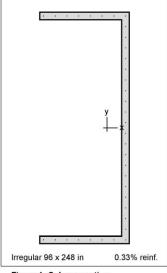


Figure 1: Column section

3.3. Exterior Points

Points	х	Y	Points	х	Y	Points	Х	Y
	in	in		in	in		in	in
1	23.9	124.0	2	-72.1	124.0	3	-72.1	116.0
4	15.9	116.0	5	15.9	-116.0	6	-72.1	-116.0
7	-72.1	-124.0	8	23.9	-124.0			

4. Reinforcement

4.1. Bar Set: ASTM A615

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	in	in ²		in	in ²		in	in ²
#3	0.38	0.11	#4	0.50	0.20	#5	0.63	0.31
#6	0.75	0.44	#7	0.88	0.60	#8	1.00	0.79
#9	1.13	1.00	#10	1.27	1.27	#11	1.41	1.56
#14	1.69	2.25	#18	2.26	4.00			

4.2. Confinement and Factors

Confinement type	Tied
For #10 bars or less	#3 ties
For larger bars	#4 ties
Capacity Reduction Factors	
Axial compression, (a)	0.8
Tension controlled ϕ , (b)	0.9
Compression controlled ϕ , (c)	0.65

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-1E2C3-1E2C3 C:ACI 318-14 Examples\Combined Axial Force and Biaxial Bending - C-Shaped Shear Core Wall.col

Page | **5** 5/1/2020 11:34 AM

4.3. Arrangement

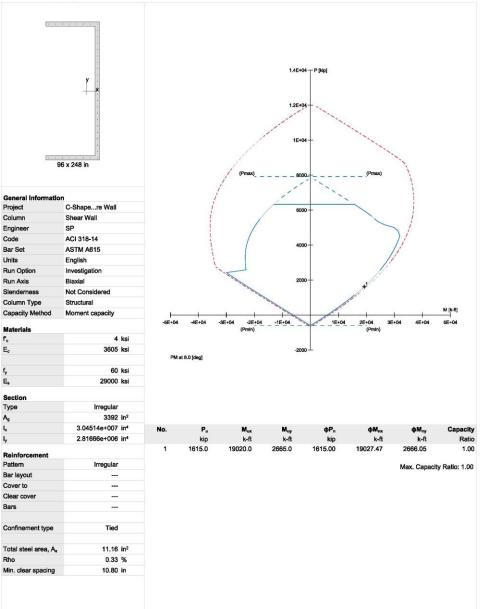
Pattern	Irregular	
Bar layout		
Cover to		
Clear cover		
Bars		
Total steel area, A _s	11.16	in ²
Rho	0.33	%
Minimum clear spacing	10.80	in

4.4. Bars Provided

Area	х	Y	Area	х	Y	Area	х	Y
in²	in	in	in ²	in	in	in ²	in	in
0.31	-68.0	120.0	0.31	-55.4	120.0	0.31	-42.9	120.0
0.31	-30.3	120.0	0.31	-17.7	120.0	0.31	-5.1	120.0
0.31	7.4	120.0	0.31	20.0	120.0	0.31	20.0	108.6
0.31	20.0	97.1	0.31	20.0	85.7	0.31	20.0	74.3
0.31	20.0	62.9	0.31	20.0	51.4	0.31	20.0	40.0
0.31	20.0	28.6	0.31	20.0	17.1	0.31	20.0	5.7
0.31	20.0	-5.7	0.31	20.0	-17.1	0.31	20.0	-28.6
0.31	20.0	-40.0	0.31	20.0	-51.4	0.31	20.0	-62.9
0.31	20.0	-74.3	0.31	20.0	-85.7	0.31	20.0	-97.1
0.31	20.0	-108.6	0.31	20.0	-120.0	0.31	7.4	-120.0
0.31	-5.1	-120.0	0.31	-17.7	-120.0	0.31	-30.3	-120.0
0.31	-42.9	-120.0	0.31	-55.4	-120.0	0.31	-68.0	-120.0

5. Factored Loads and Moments with Corresponding Capacity Ratios NOTE: Calculations are based on "Moment Capacity" Method.

No.	No. Demand			Capacity			Parameters at Capacity			Capacity
	Pu	M _{ux}	M _{uy}	φP'n	ϕM_{nx}	фМ _{ny}	NA Depth	ε _t	φ	Ratio
	kip	k-ft	k-ft	kip	k-ft	k-ft	in			
1	1615.00	19020.00	2665.00	1615.00	19027.47	2666.05	36.12	0.01374	0.900	1.00

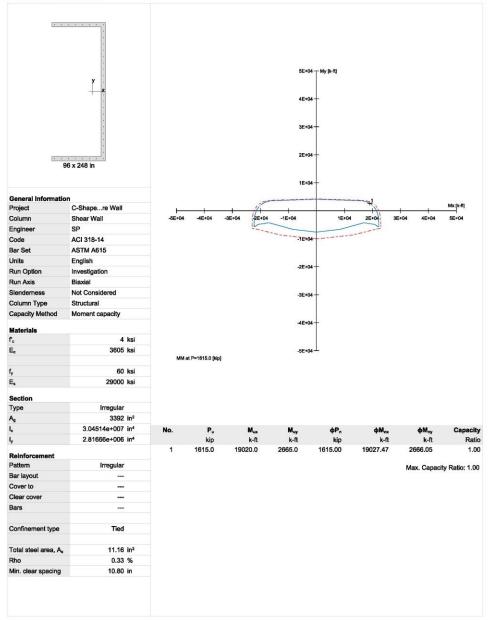

 STRUCTUREPOINT - spColumn v6.50
 Page | 6

 Licensed to: StructurePoint. License ID: 00000-0000000-4-1E2C3-1E2C3
 5/1/2020

 C:\ACI 318-14 Examples\Combined Axial Force and Biaxial Bending - C-Shaped Shear Core Wall.col
 11:34 AM

6. Diagrams

6.1. PM at θ=8 [deg]



STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-1E2C3-1E2C3 C:\ACI 318-14 Examples\Combined Axial Force and Biaxial Bending - C-Shaped Shear Core Wall.col Page | **7** 5/1/2020 11:34 AM

6.2. MM at P=1615 [kip]

3. Summary of Design Results

3.1. Comparison of Results by Method

In all of the hand calculations used illustrated above, the results are in precise agreement with the automated exact results obtained from the <u>spColumn</u> program.

Table 2 - Comparison of Results					
Parameter	Hand	spColumn			
c, in.	36.12	36.12			
α, degrees	120	120			
d ₁ , in.	201.56	201.56			
ϵ_{s1} , in./in.	0.01374	0.01374			
φP _n , kip	1614.7	1615.0			
φM _{nx} , kip-ft	19025.3	19027.5			
φM _{ny} , kip-ft	2665.5	2666.1			

3.2. spColumn Interaction Diagram Results Export

spColumn allows the user to export results data of the following:

- Points from the interaction diagram or 3D failure surface to a Comma-Separated Values (CSV) file or to a Tab Delimited Text file (TXT). These files can be read by most spreadsheet and mathematical programs where data produced by spColumn can be further analyzed and processed as needed by the user. Coordinates of the points (P, M_x, M_y) are saved together with corresponding location of the neutral axis (depth and angle), maximum steel strain, and (for ACI code) strength reduction factor.
- 2. The column section can be exported to a file in Drawing Exchange Format (DXF) format that is readable by most CAD programs.
- 3. A graphical report can be exported to a file in Enhanced Metafile Format (EMF) that is readable by most graphics and word processing programs. The file will include column section, column information, and the interaction diagram currently displayed on the screen presented the same way as in the printout created by the default printer.

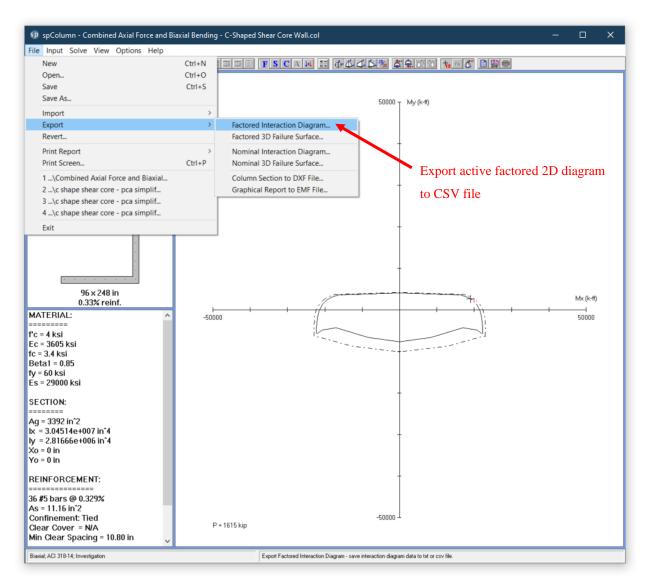


Figure 11 – Exporting Data to CSV file (spColumn)

	Table 3 - ϕM_{nx} - ϕ	M _{ny} Diagram at φF	P _n = 1615 kip	(Sample Result	s of spColum	n Export)	
φP _n , kip	ϕM_{nx} , kip-ft	φM _{ny} , kip-ft	c, in.	α, degrees	d ₁ , in.	ϵ_1 , in./in.	φ
1615	22277.1	-4470.2	7.99	0	244.00	0.08865	0.90
1615	22069.2	-1994.2	19.58	10	256.26	0.03627	0.90
1615	21651.6	-467.8	29.77	20	260.73	0.02327	0.90
1615	21150.3	571.6	36.28	30	257.27	0.01828	0.90
1615	20568.7	1389.4	39.46	40	246.00	0.01570	0.90
1615	19874.0	2079.6	39.40	50	227.26	0.01430	0.90
1615	19030.2	2664.7	36.13	60	201.61	0.01374	0.90
1615	17939.8	3160.1	29.48	70	169.83	0.01428	0.90
1615	16322.4	3567.3	19.19	80	132.90	0.01778	0.90
1615	0.0	4107.5	3.09	90	91.92	0.08624	0.90
1615	-16322.4	3567.3	19.19	100	132.90	0.01778	0.90
1615	-17939.8	3160.1	29.48	110	169.83	0.01428	0.90
1615	-19030.2	2664.7	36.13	120	201.61	0.01374	0.90
1615	-19874.0	2079.7	39.40	130	227.26	0.01430	0.90
1615	-20568.7	1389.4	39.46	140	246.00	0.01570	0.90
1615	-21150.3	571.6	36.28	150	257.27	0.01828	0.90
1615	-21651.6	-467.8	29.77	160	260.73	0.02327	0.90
1615	-22069.2	-1994.2	19.58	170	256.26	0.03627	0.90
1615	-22277.1	-4470.2	7.99	180	244.00	0.08865	0.90
1615	-22225.7	-5586.4	21.56	190	256.28	0.03267	0.90
1615	-22188.5	-5688.4	37.17	200	260.78	0.01805	0.90
1615	-22155.7	-5707.6	51.68	210	257.35	0.01194	0.90
1615	-22111.5	-5705.9	64.40	220	246.10	0.00846	0.90
1615	-22041.2	-5694.5	74.89	230	227.37	0.00611	0.90
1615	-20856.1	-4886.7	89.71	240	201.74	0.00375	0.79
1615	-16945.2	-4287.2	102.17	250	169.98	0.00199	0.65
1615	-8382.6	-6663.6	81.53	260	133.05	0.00190	0.65
1615	0.0	-7631.8	59.03	270	92.08	0.00168	0.65
1615	8382.6	-6663.6	81.53	280	133.05	0.00190	0.65
1615	16945.2	-4287.2	102.17	290	169.98	0.00199	0.65
1615	20856.1	-4886.7	89.71	300	201.74	0.00375	0.79
1615	22041.2	-5694.5	74.89	310	227.37	0.00611	0.90
1615	22111.5	-5705.9	64.40	320	246.10	0.00846	0.90
1615	22155.7	-5707.6	51.68	330	257.35	0.01194	0.90
1615	22188.5	-5688.4	37.17	340	260.78	0.01805	0.90
1615	22225.7	-5586.4	21.56	350	256.28	0.03267	0.90
1615	22277.1	-4470.2	7.99	0	244.00	0.08865	0.90

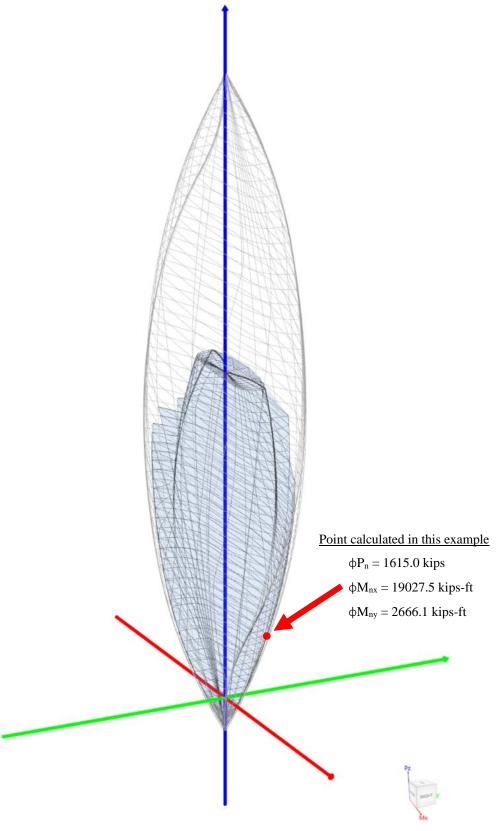
Other tables can be exported for other load points or for all load points as needed by the user.

4. Conclusions & Observations

The analysis of the reinforced concrete section performed by <u>spColumn</u> conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility.

In most building design calculations, such as the examples shown for flat plate or flat slab concrete floor systems, all building columns may be subjected to biaxial bending (M_x and M_y) due to lateral effects and unbalanced moments from both directions of analysis. This requires an investigation of the column P-M_x-M_y interaction diagram in two directions simultaneously (axial force interaction with biaxial bending).

This example shows the calculations needed to obtain one point on the three-dimensional failure surface (biaxial M_x - M_y interaction diagram). Generating the three-dimensional failure surface (interaction diagram) for a column or wall section subjected to a combined axial force and biaxial bending moments is tedious and challenging for engineers and the use of a computer aid can save time and eliminate errors. StucturePoint's <u>spColumn</u> program can, quickly, simply and accurately generate the three-dimensional failure surface (interaction diagram) for all commonly encountered column, beam or wall sections in addition to complex and irregular cross-sections. Following figure shows the 3D representation of the complete Nominal and Factored failure surfaces for the core wall in this example.


The spColumn 2D/3D viewer is a powerful tool especially for investigating interaction diagrams (failure surfaces) for columns and walls sections subjected to a combined axial force and biaxial bending moments. The viewer allows the user to view and analyze 2D interaction diagrams and contours along with 3D failure surfaces in a multi viewport environment. The Figure 13 shows three views of:

- 1. M_x-M_y interaction diagram cut at axial load of 1615 kip in compression
- 2. P-M interaction diagram cut at angle of 8°
- 3. A 3D failure surface (interaction diagram showing the points calculated in this example).

Figures 13 and 14 show 3D visualization of failure surface with a horizontal and vertical plane cut, respectively.

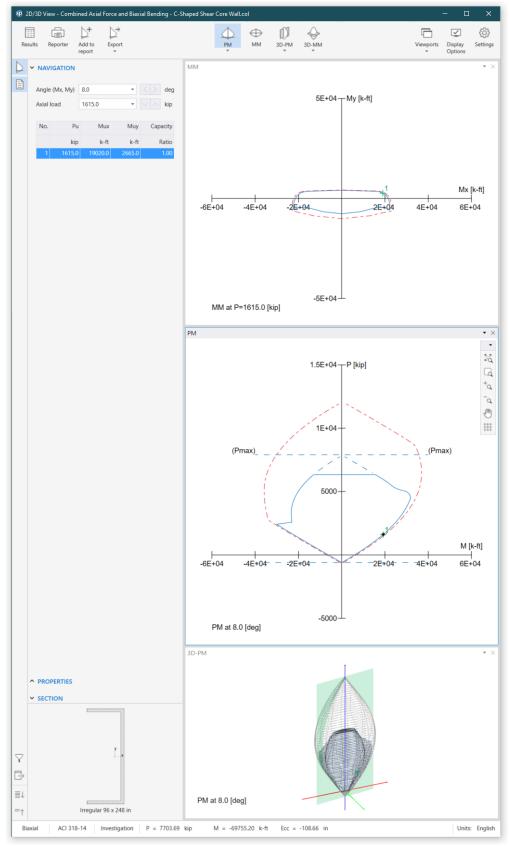
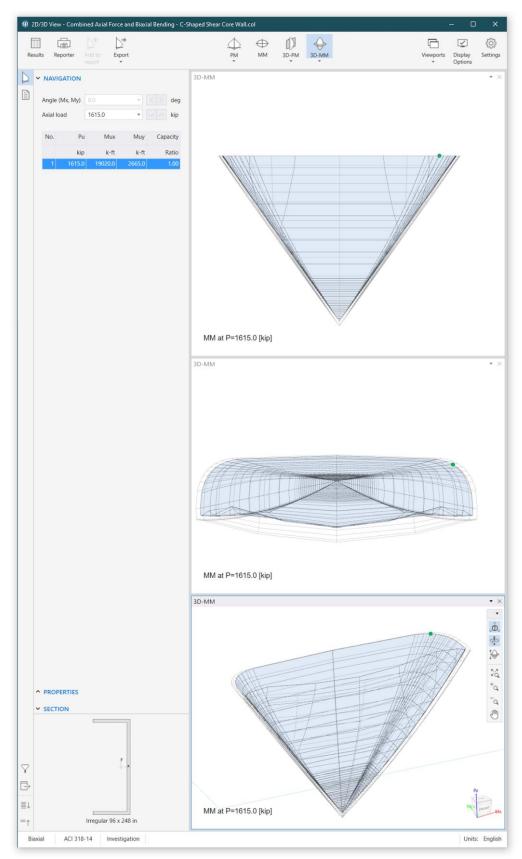



Figure 13 – 2D/3D Biaxial Interaction Diagram Viewer (spColumn)

<u>Figure 14 – 3D</u> Failure Surface with a Horizontal Plane Cut at P = 1615 kip (spColumn)

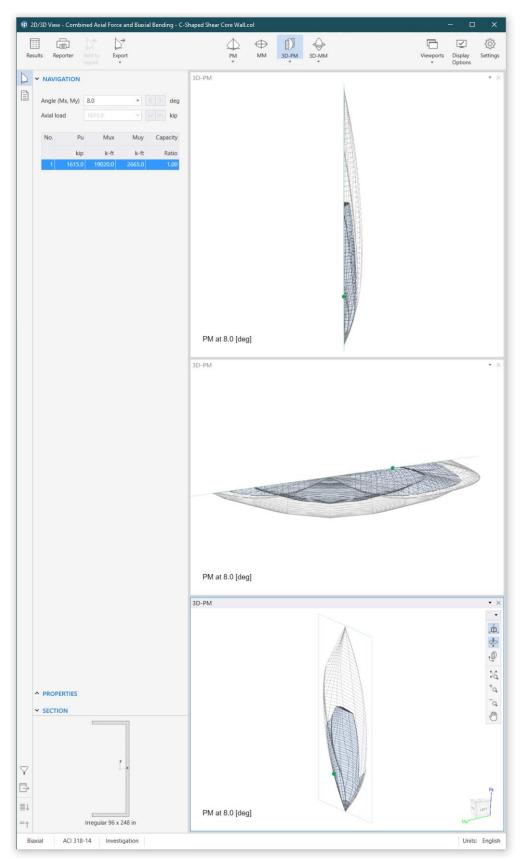


Figure 15 – 3D Failure Surface with a Vertical Plane Cut at 8° (spColumn)