

Pile (Caisson) Analysis and Design for Bridge Pier Foundations (ACI 318-19)

Pile (Caisson) Analysis and Design for Bridge Pier Foundations (ACI 318-19)

Reinforced concrete piles and caissons are essential deep foundation elements used to transfer structural loads to deeper, more stable soil or rock layers, especially in challenging conditions where shallow foundations are inadequate. Commonly used in foundations for bridge piers, buildings, and industrial facilities, these elements provide critical support against axial and lateral forces. In this case study, a pile supported mat foundation (known as pile cap) shown below supports a highway bridge pier.

<u>spMats</u> from <u>StructurePoint</u> will be used to model and analyze the pile cap and determine the individual pile reactions. These reactions will then be exported to <u>spColumn</u> from <u>StructurePoint</u> using the "Export to spColumn CTI files" tool to design and optimize the piles for two scenarios: (1) piles pinned to the pile cap and (2) piles fixed to the pile cap. Additionally, a comparison between different transverse confinement types - tied and spiral reinforcement - will be conducted to evaluate their influence on pile capacity and behavior.

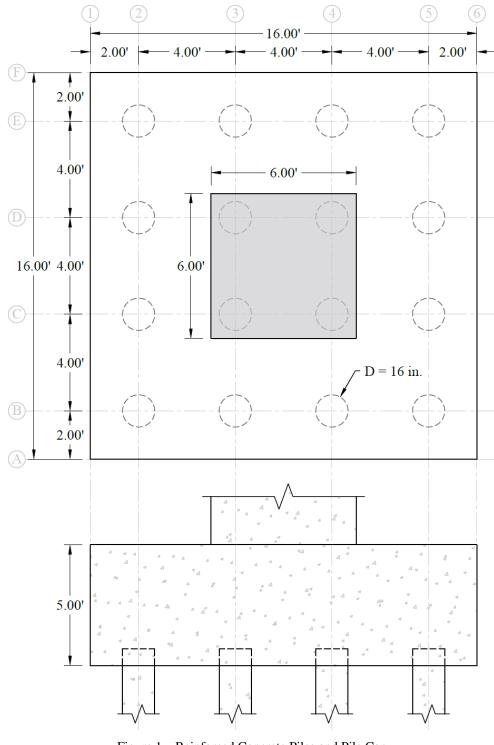


Figure 1 – Reinforced Concrete Piles and Pile Cap

Contents

1.	Introduction	2
2.	Method of Solution	3
3.	Analysis using spMats	4
4.	Design and Investigation using spColumn	12
	4.1. When Pile is Pinned to the Pile Cap	17
	4.2. When Pile is Fixed to the Pile Cap	21
	4.3. Spiral vs Tied Confinement	25
5.	Summary and Conclusion	27
	5.1. Pile Boundary Condition Effect	28
	5.2. Tied vs. Spiral Lateral Reinforcement	28
	5.3. Applied Loads Modeling Considerations	28
	5.4. Pile Cap Reinforcement	29
	5.5. Pile Settlement and Impact on Stiffness	32
6.	Appendix – Loads, Cases, and Combinations	33

Code

Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19)

References

- spMats Engineering Software Program Manual v10.50, STRUCTUREPOINT., 2025
- spColumn Engineering Software Program Manual v10.10a, STRUCTUREPOINT., 2025
- ACI Committee 543. ACI 543R-12: Guide to Design, Manufacture, and Installation of Concrete Piles. American Concrete Institute, 2012.
- FHWA-NHI-16-009. Drilled Shafts: Construction Procedures and LRFD Design Methods. Federal Highway Administration, 2018.
- AASHTO LRFD Bridge Design Specifications, 9th Edition. American Association of State Highway and Transportation Officials (AASHTO), 2020.
- Contact <u>Support@StructurePoint.org</u> to obtain supplementary materials (<u>spColumn</u> and <u>spMats</u> models: CS-Pile-Caisson-Design-ACI-318-19-P16-Fixed.colx, CS-Pile-Caisson-Design-ACI-318-19-P16-Pinned.colx and CS-Pile-Caisson-Design-ACI-318-19.matx)

Design Data

Foundation Geometry: Width = 16'-0" Length = 16'-0" Thickness = 60 in.

Load, Load Cases, and Load Combinations: Refer to <u>Appendix</u>

Soil Properties:

Allowable Bearing Capacity = 500 ksfSubgrade Modulus, $k_s = 7,000 \text{ kcf}$

Material Properties:

 $f'_c = 5$ ksi $f_y = 60$ ksi

1. Introduction

Reinforced concrete piles and caissons are deep foundation elements widely employed to transfer structural loads to competent soil or rock strata. These elements are essential in cases where surface soils lack sufficient bearing capacity to support applied loads. Among the most common pile types, cast-in-place concrete piles - such as drilled shafts or caissons - and precast driven piles are frequently used due to their ability to resist axial and lateral loads, provide settlement control, and accommodate complex subsurface conditions. Micropiles are used where the headroom or clearance is limited and usually for lower axial compression and tension capacity.

In bridge construction, reinforced concrete piles and caissons are often used to support bridge piers and pile caps, ensuring heavier loads from superstructures are transferred through water or poor soil conditions to stronger load bearing layers. These foundations are especially critical in river crossings and marine environments, where scour and erosion pose significant challenges. The integration of pile groups into pile caps provides a rigid platform to distribute superstructure loads and maintain structural integrity under vibratory loads, moving loads, wind forces, and seismic forces.

Beyond transportation infrastructure, reinforced concrete piles are extensively used in buildings, towers, storage tanks, chimneys, and heavy industrial facilities. They serve to support vertical loads and resist horizontal forces induced by wind, machinery, or seismic activity. Industrial applications often involve heavy equipment, reciprocating machinery, and dynamic loading, requiring pile foundations with enhanced durability and stiffness to secure equipment and meet serviceability and functionality requirements.

The use of advanced structural analysis software, such as <u>spMats</u>, facilitates the evaluation of pile-soil-structure interaction, the modeling of pile caps, and the accurate distribution of axial and bending forces among piles. Such tools support engineers in optimizing designs for safety, economy, and performance under service and ultimate load conditions. Additionally, <u>spColumn</u> can be used to design and investigate the capacity of reinforced concrete piles and caissons under combined axial and bending loads, enabling engineers to optimize pile sections by adjusting reinforcement configurations and material properties for improved strength and efficiency.

2. Method of Solution

Finite Element Analysis (FEA) will be employed using <u>spMats</u> to model the reinforced concrete pile cap and evaluate its interaction with the supported bridge pier and the underlying piles. The pile cap will be modeled as a mat foundation with appropriate boundary conditions and loading to reflect the bridge superstructure behavior. From the <u>spMats</u> analysis, the individual axial reactions in each pile will be extracted using the integrated "Export to <u>spColumn</u> CTI files" feature.

These reactions will be imported into <u>spColumn</u>, where the pile under the maximum tension and compression reactions will be evaluated. <u>spColumn</u> will be used to perform axial-bending interaction analysis, generate interaction diagrams, and develop the 3D failure surface for the selected pile section.

To finalize the design, a detailed investigation will be conducted in <u>spColumn</u> for two boundary conditions: (1) piles pinned to the pile cap, and (2) piles fixed to the pile cap. Additionally, the effect of transverse reinforcement confinement will be studied by comparing tied versus spiral reinforcement configurations to assess their impact on the section capacity.

CONCRETE SOFTWARE SOLUTIONS

3. Analysis using <u>spMats</u>

Piles						
Label	Pile1					
Calculated by F				D		
Spring constant	11340.92	klf		1		
Material	Concrete *		Тур	pe	Round	Ŧ
Soil at base	Bedrock *		Dia	ameter (D)		16.00
Length	50.00	ft				
Young's modulus	3600.0	ksi				
Embedment	12.00	in				
✓ Allowable Read	tions					
Compression	230.000	kips				
Tension	-50.000	kips				

Figure 2 - Piles Properties (spMats)

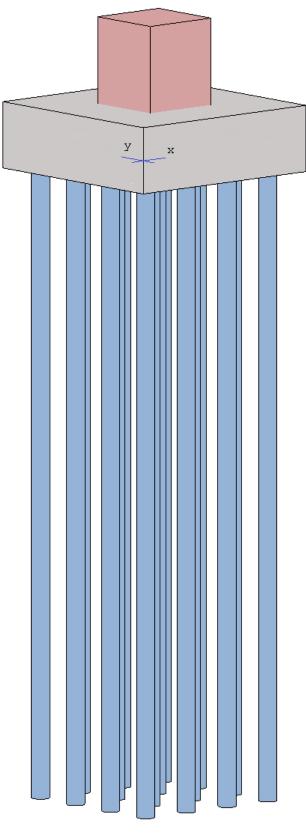


Figure 3 – 3D View Pile Cap Foundation (spMats)

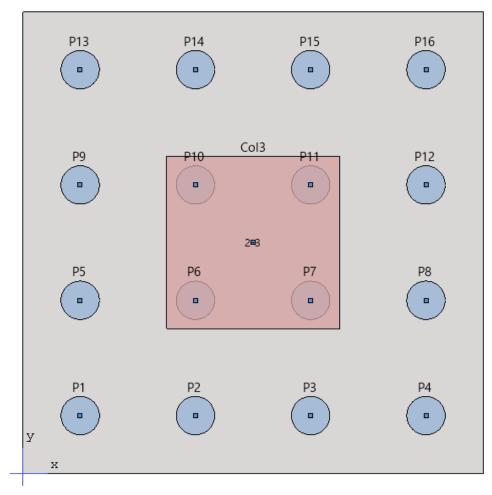


Figure 4 – Plan View Pile Cap Foundation (spMats)

In <u>spMats</u>, pile reactions are represented graphically with directional arrows - upward arrows for compression and downward arrows for tension following the program sign convention for coordinate axes. When allowable pile reactions are defined by the user as shown in Figure 2, the program will automatically evaluate each pile's reaction against the defined limits. Pile reactions that do not exceed the allowable values are displayed in blue, while those that exceed are highlighted in red to alert the user. A warning icon will also appear in the Contours tree to indicate that one or more pile reactions exceed the allowable limit. Note that allowable pile reactions, when specified, are only applicable to and compared with the Service pile reactions.

CONCRETE SOFTWARE SOLUTIONS

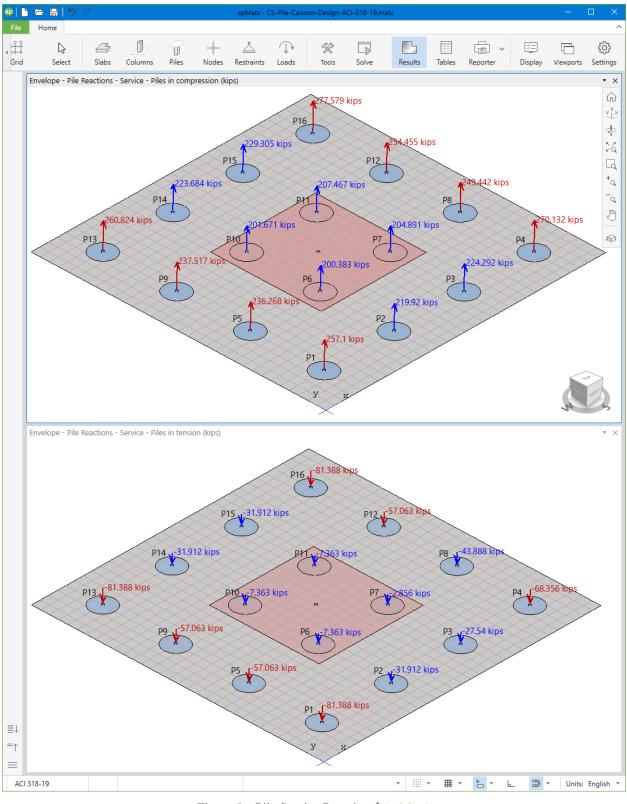


Figure 5 - Pile Service Reactions* (spMats)

* Pile reactions that do not exceed the allowable values are displayed in blue, while those that exceed are highlighted in red to alert the user.

CONCRETE SOFTWARE SOLUTIONS

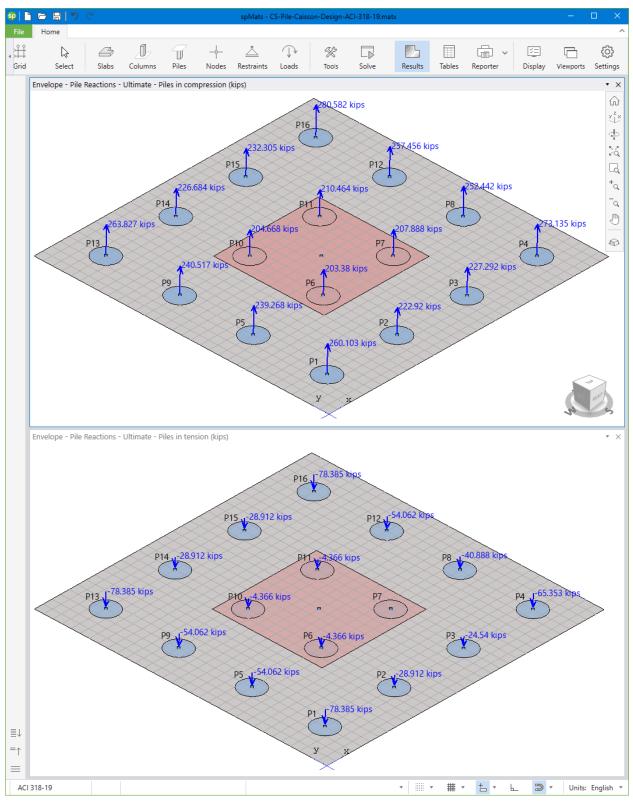


Figure 6 – Pile Ultimate Reactions (spMats)

In the tabular output, the program provides a summary of the individual pile reactions from service and ultimate load combinations. Each pile is identified by its Pile ID, Pile Label, and the Node to which it is assigned, along with the corresponding Node ID. The service reaction for each pile is compared against the user-defined allowable limits. If a pile's service reaction exceeds its allowable limit, an "x" mark is flagged in the corresponding row, indicating that the allowable reaction has been exceeded.

Project	* Recults	- Envelope	- Service	Reaction	s - Dilos			$\uparrow \downarrow$	30 / 1	11 │	\downarrow	₿		
Definitions	Results - Envelope - Service Reactions - Piles Notes Notes													
Assignments	NOTE: [x] In	dicates allowable rea	action exceeded							1				
Analytical Model	Pile ID	Pile Label		Compression				Tension		Node	Node ID			
Results			Fz (+)	Allowable	Ld Comb.		Fz (-)	Allowable	Ld Comb.					
Solver Messages			kips				kips							
✓ Envelope	P1	Pile1	257.100	230.000	S6	x	-81.388	-50.000	S3	x 137	N2			
Nodal Displacements	P2	Pile1	219.920	230.000	S6		-31.912	-50.000	S3	145	N3			
	P3	Pile1	224.292	230.000	S5		-27.540	-50.000	S4	153	N4			
 Service Reactions 	P4	Pile1	270.132	230.000	S5	x	-68.356	-50.000	S4	x 161	N5			
	P5	Pile1	236.268	230.000	S6	×	-57.063	-50.000	S3	x 401	N6			
Piles	P6	Pile1	200.383	230.000	S6		-7.363	-50.000	S3	409	N7			
	P7	Pile1	204.891	230.000	S5		-2.856	-50.000	S4	417	N8			
	P8	Pile1	249.442	230.000	S5	х	-43.888	-50.000	S4	425	N9			
> Ultimate Reactions	P9	Pile1	237.517	230.000	S8	x	-57.063	-50.000	S1	x 665	N10			
> Governing Reinforcement	P10	Pile1	201.671	230.000	S8		-7.363	-50.000	S1	673	N11			
> Analysis Moment & Reinf.	P11	Pile1	207.467	230.000	S7		-7.363	-50.000	S2	681	N12			
✓ Service	P12	Pile1	254.455	230.000	S7	×	-57.063	-50.000	S2	x 689	N13			
> Force Vector	P13	Pile1	260.824	230.000	S8	х	-81.388	-50.000	S1	x 929	N14			
> Displacement Vector	P14	Pile1	223.684	230.000	S8		-31.912	-50.000	S1	937	N15			
> Reactions	P15	Pile1	229.305	230.000	S7		-31.912	-50.000	S2	945	N16			
Sum of Reactions	P16	Pile1	277.579	230.000	S7	×	-81.388	-50.000	S2	x 953	N17			
> Soil Disp. & Pressure	A	A								▲	A			
✓ Ultimate						_								
> Force Vector	.													
		E	ach pile is	s identified	d by its F	Pile	ID, Pile I	Label, and	the Node	to				
 Ranges 			which it	is assigned	l, along v	with	the corre	esponding	Node ID.					
From To														
Elements 🗹 All 1 1,024														

Figure 7 - Pile Service Reactions Table Output (spMats)

CONCRETE SOFTWARE SOLUTIONS

					$\uparrow \downarrow$	31 / 111		
> Project	🔺 Results - En	velope - Ultim	ate Reactions	- Piles				
> Definitions	Pile ID	- Compressio		Tension		Node	Node ID	
> Assignments		Fz (+)	Ld Comb.	Fz (-)	Ld Comb.			
> Analytical Model		kips		kips				
✓ Results	P1	260.103	U6	-78.385	U3	137	N2	
Solver Messages	P2	222.920	U6	-28.912	U3	145	N3	
✓ Envelope	P3	227.292	U5	-24.540	U4	153	N4	
Nodal Displacements	P4	273.135	U5	-65.353	U4	161	N5	
Soil Disp. & Pressure	P5	239.268	U6	-54.062	U3	401	N6	
> Service Reactions	P6	203.380	U6	-4.366	U3	409	N7	
 Ultimate Reactions 	P7	207.888	U5	-	00	417	N8	
Soil & Spring	P8	252.442	U5	-40.888	U4	425	N9	
Piles	P9	240.517	U8	-54.062	U1	665	N10	
	P10	204.668	U8	-4.366	U1	673	N11	
Slaved Nodes	P11	210.464	U7	-4.366	U2	681	N12	
> Governing Reinforcement	P12	257.456	U7	-54.062	U2	689	N13	
> Analysis Moment & Reinf.	P13	263.827	U8	-78.385	U1	929	N14	
✓ Service	P14	226.684	U8	-28.912	U1	937	N15	
> Force Vector	P15	232,305	U7	-28.912	U2	945	N16	
> Displacement Vector	P16	280.582	U7	-78.385	U2	953	N17	
> Reactions	110	2001502	0.1	10,000	02	555		
> Sum of Reactions								
 Soil Disp. & Pressure 								
 VItimate Force Vector 								
 Force vector 	T							
✓ Ranges								
From To								
Elements V All 1 1,024								
Nodes All 1 1,089								

Figure 8 – Pile Ultimate Reactions Table Output (spMats)

CONCRETE SOFTWARE SOLUTIONS

4. Design and Investigation using spColumn

<u>spMats</u> provides the option to export piles and columns information from the foundation model to <u>spColumn</u>. Column Text Input (CTI) files are generated by <u>spMats</u> to include the section, materials, and the loads from the <u>spMats</u> foundation model required by <u>spColumn</u> for strength design and investigation of piles. Once the <u>spMats</u> foundation model is completed and successfully executed, the following steps illustrate the design of a sample pile.

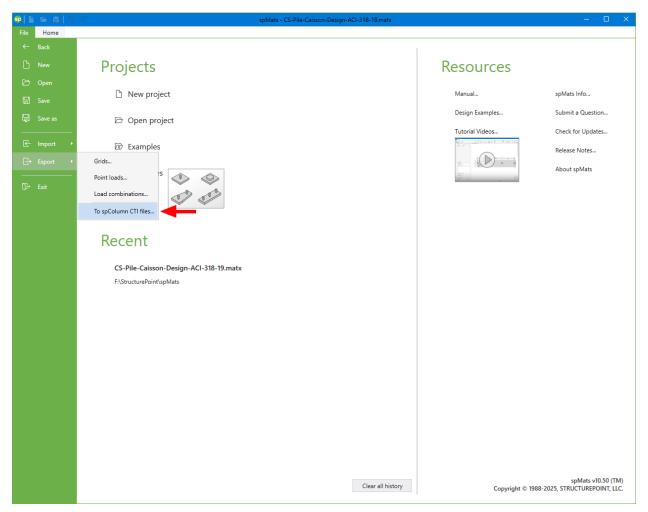


Figure 9 – Exporting spColumn CTI Files (spMats)

Export to spColum	n CTI files			×						
Run Option		Strue	Structural Member							
Investigation		Columns								
Design		~	Piles							
Material Properties										
Strength, f'c		5.000	ksi							
Strength, f'y		60.000	ksi							
Reinforcement										
Bar set	ASTM A615	*	>							
Clear cover		2.000	in	To longitudinal bars						
	Minimum	M	aximum	1						
No. of bars	8		20							
Bar size	#6 *	#10	*							
Options										
 Eliminate dupl 	icate loads									
			OK	Cancel						

Figure 10 – Exporting CTI Files Dialog Box for Piles (spMats)

🧐 spMats	×
16 files successfully exported.	
	ОК

Figure 11 – Message Dialog Box (spMats)

Piles	× +		-		SP 🖿 🗁				spMats - C	S-Pile-Caiss	son-Design-	ACI-318-19.m	atx			- 0
← → ↑ ♂	□ > … spMats > Pile Caisson	> Piles	Search Piles	Q	ER HO	₽ ∰	ß	B	<u>, 0</u> -	7	-4-	<u> </u>	\bigcirc	R		b
New - 🔏 🕡	🛅 🖄 🖄 🗊 📬 Sort -	≡ View ~		📑 Details		Define Grid	Select	Slabs	Columns	Piles	Nodes	Restraints	Loads	Tools	Solve R	sults Table
A Home	Name	Date modified	Туре	Size	Envelo	ope - Pile Reaction	s - Uitimate - H	nies in comp	pression (kip:	S)						
R Gallery	3 CS-Pile-Caisson-Design-ACI-318-19-P1.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38											
Callery	OS-Pile-Caisson-Design-ACI-318-19-P2.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38									_	_	
This PC	OS-Pile-Caisson-Design-ACI-318-19-P3.cti	5/21/2025 11:17 AM	spColumn Text Input File	. 21	38	P13			P14			P15	0.5 1.		P16	
	OS-Pile-Caisson-Design-ACI-318-19-P4.cti	5/21/2025 11:17 AM	spColumn Text Input File	e 21	38	()	3.827 kips			i84 kips	1		305 kips	1	280.5821	ips
🐲 Network	OS-Pile-Caisson-Design-ACI-318-19-P5.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38		/	(
	OS-Pile-Caisson-Design-ACI-318-19-P6.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38	\sim						<u> </u>			Ŷ	
	OS-Pile-Caisson-Design-ACI-318-19-P7.cti	5/21/2025 11:17 AM	spColumn Text Input File	e 21	38											
	3 CS-Pile-Caisson-Design-ACI-318-19-P8.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38											
	OS-Pile-Caisson-Design-ACI-318-19-P9.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38											
	③ CS-Pile-Caisson-Design-ACI-318-19-P10.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38	P9			P10			P11			P12	
	3 CS-Pile-Caisson-Design-ACI-318-19-P11.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38		10.517 kips	(204.6	68 kips		© 210.4	64 kips	(257.4561	ips
	③ CS-Pile-Caisson-Design-ACI-318-19-P12.cti	5/21/2025 11:17 AM	spColumn Text Input File	. 21	38)		U			U			۳)	
	3 CS-Pile-Caisson-Design-ACI-318-19-P13.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38	\sim									-	
	3 CS-Pile-Caisson-Design-ACI-318-19-P14.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38											
	OS-Pile-Caisson-Design-ACI-318-19-P15.cti	5/21/2025 11:17 AM	spColumn Text Input File	. 21	38											
	Strain CS-Pile-Caisson-Design-ACI-318-19-P16.cti	5/21/2025 11:17 AM	spColumn Text Input File	21	38											
Pile wif	h Maximum Com	nression	and Ten	sion		P5	9.268 kips		P6 203.3	18 kips		P7 207.3	888 kips	(P8	ips
The wit			r und i en	51011												
						P1	50.103 kips		P2	2 kips		P3	292 kips		P4	ins
)	(0)		(•	
					≣↓ ¥										T	N
					=+	x										Тор
					=	0										
					=										_	3
16 items				= 0	ACI 318-19									· ·	⊪ • † •	⊾ ⊃

Figure 12 – Exported CTI Files (spMats)

After exporting <u>spColumn</u> input files, the pile design/investigation can proceed/modified to meet project specifications and criteria.

CONCRETE SOFTWARE SOLUTIONS

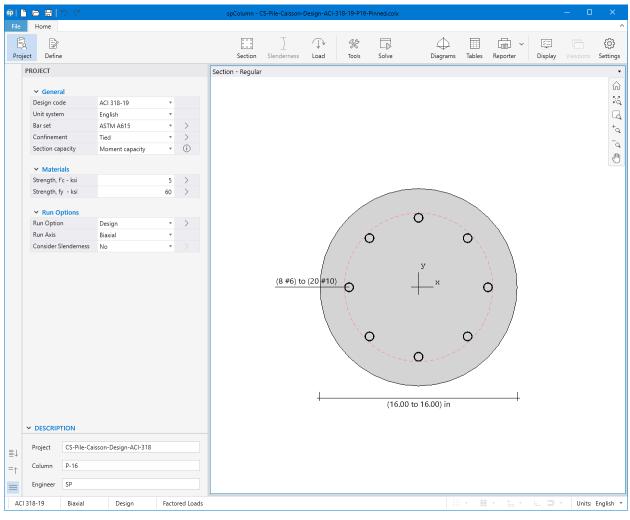


Figure 13 – spColumn Design Interface

spcolumn spmats

6 🗁		a			spColumn -	CS-Pile-Caisson-	Design-ACI-3	18-19-P16-F	oinned.colx					- 0	>
e Hoi	Define				Section	 Slenderness	↓ Load	SK Tools	Solve	ل Diagrams	Tables	Reporter) Display		{ن Settin
SECTIO	NC				Section - Regula	r									
Rect.	O Cir.		Irregula		-										
~ 3	Size	0.1.5.1	0												
	meter (D)	Start End	Step 16 0 i	n											
Туре	Bar Arranger •	ment All Sides Equal													
Layo		Circular													
								/							
~ /	Reinforceme									0					
No	of bars	Minimum 8	Maximum 20							0					
Bar		#6 * #		>				, C)		Ò.				
Clea	ar cover		2 i												
										У					
	Cover Type ar cover to	Longitudinal bars	Ŧ			(8 #6) to	o (20 #10)	6		x					
								P		—	C	1			
		ars with #10 T Long										/ /			
#4	Trans, ba														
) `C)		0				
)			~ /	1.				
										.0					
									<u> </u>						
							1					1			
							+		(16.00) to 16.00) in					
Y PR	OPERTIES														
	n. Clear bar sp	acing	i												
	ss area		i i												
Tota Rho			1												
	, x. capacity rat	io		-											
			Design	Trace											

Figure 14 – spColumn Section Editor

Structure Point CONCRETE SOFTWARE SOLUTIONS

4.1. When Pile is Pinned to the Pile Cap

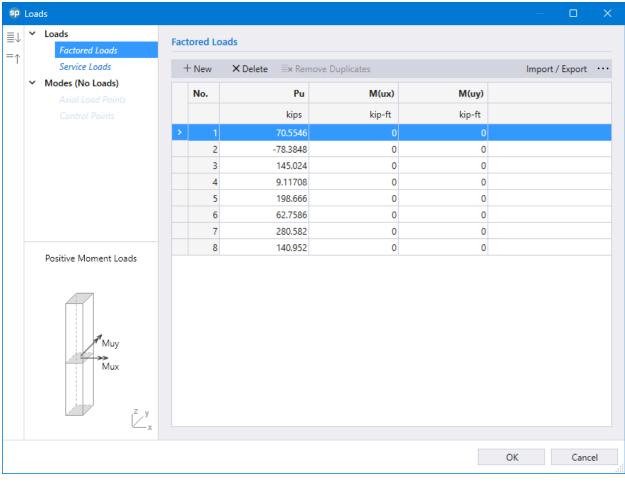


Figure 15 - spColumn Factored Loads Imported from spMats

spcolumn spmats

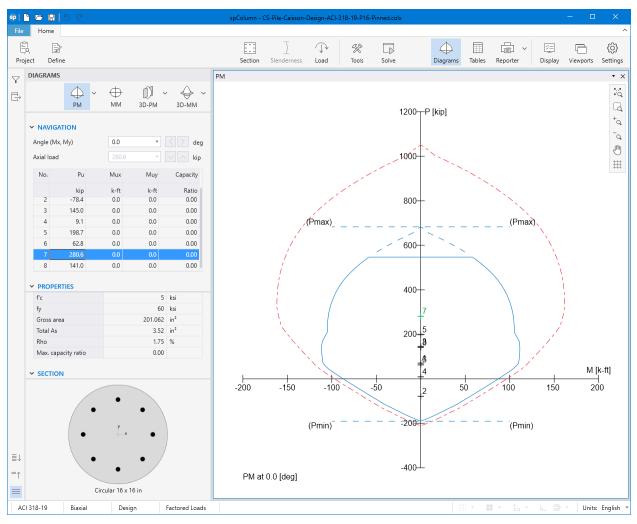
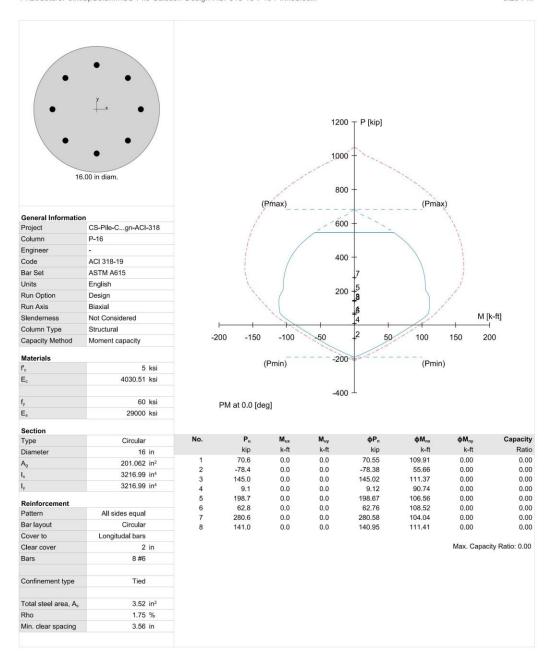



Figure 16 – Pile Section Interaction Diagram at 0° (spColumn)

STRUCTUREPOINT - spColumn v10.10a (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-2B1B4-2B1B4 F:\StructurePoint\spColumn\CS-Pile-Caisson-Design-ACI-318-19-P16-Pinned.colx Page | 1 5/21/2025 3:20 PM

Figure 17 – spColumn Output Report (When Pile is Pinned)

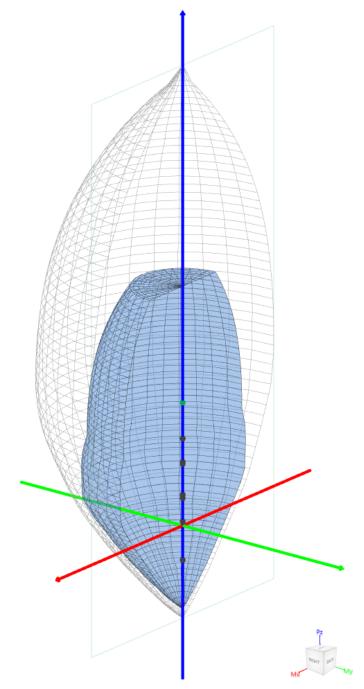


Figure 18 – Pile 3D Failure Surfaces (spColumn)

Structure Point CONCRETE SOFTWARE SOLUTIONS

4.2. When Pile is Fixed to the Pile Cap

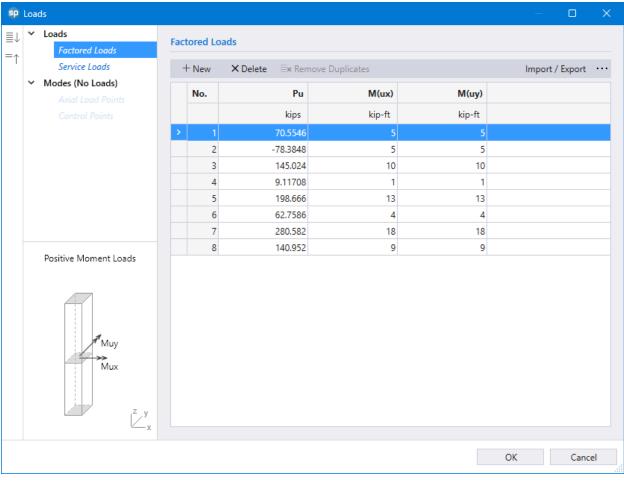


Figure 19 - spColumn Factored Loads Imported from spMats

spcolumn spmats

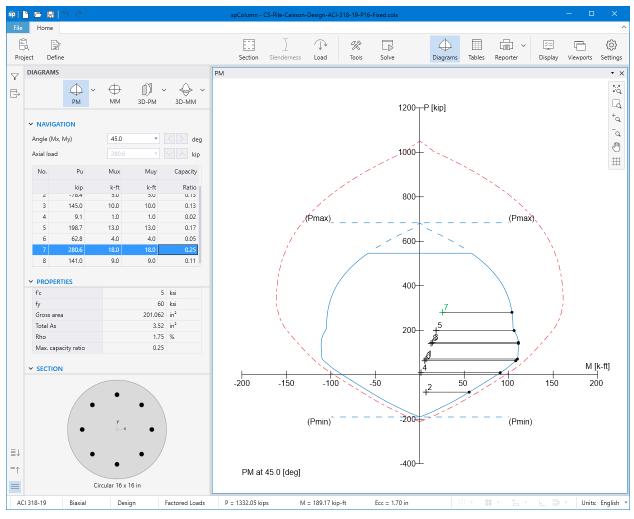


Figure 20 - Pile Section Interaction Diagram at 45° (spColumn)

STRUCTUREPOINT - spColumn v10.10a (TM) Licensed to: StructurePoint, LLC. License ID: 00000-0000000-4-2B1B4-2B1B4 F:\StructurePoint\spColumn\CS-Pile-Caisson-Design-ACI-318-19-P16-Fixed.colx Page | 1 5/27/2025 4:16 PM

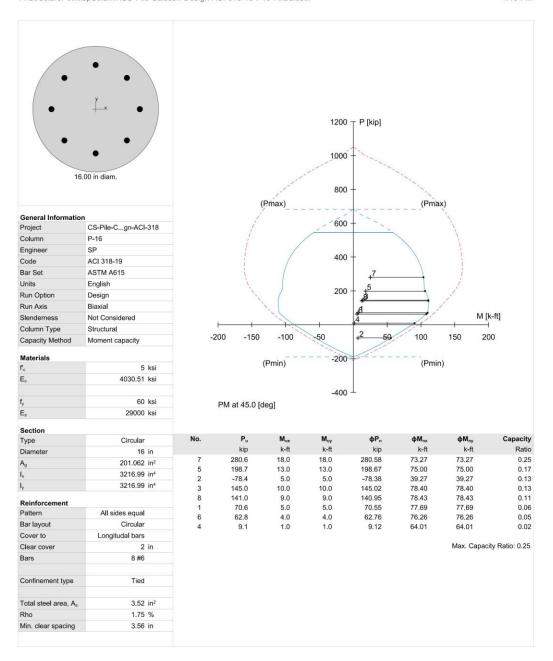
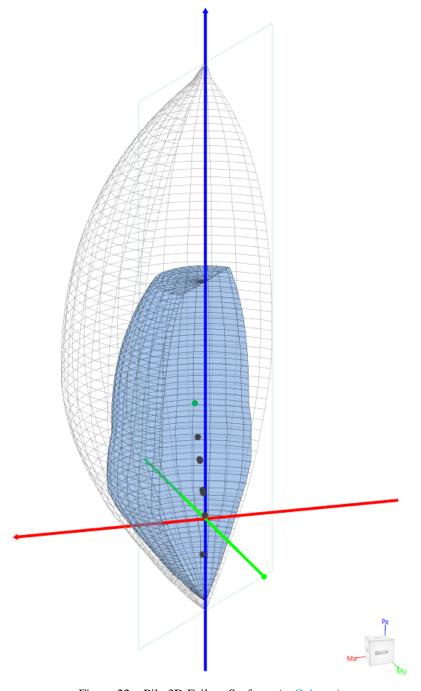



Figure 21 – spColumn Output Report (When Pile is Fixed)

4.3. Spiral vs Tied Confinement

sp	Defi	nitions		×					
≣↓	Concrete		Confinement						
=↑		Reinforcing Steel Reduction Factors	Confinement Tied •						
		Design Criteria Bar Set	Capacity Reduction Factors, φ						
	~	Load Case/Combo. Load Cases Load Combinations	Axial compression, (a) Tension controlled φ, (b) Compression controlled φ, (c)	0.8 0.9 0.65					
sp	Defi	nitions		×					
≣↓	~	Properties	Confinement						
=↑									
		Reinforcing Steel Reduction Factors	Confinement Spiral •						
			Confinement Spiral ▼ Capacity Reduction Factors, φ						
	*	Reduction Factors Design Criteria Bar Set Load Case/Combo.		0.85					
	*	Reduction Factors Design Criteria Bar Set Load Case/Combo. Load Cases	Capacity Reduction Factors, φ	0.85					
	~	Reduction Factors Design Criteria Bar Set Load Case/Combo.	Capacity Reduction Factors, φ Axial compression, (a)						

Figure 23 – Confinement Type (spColumn)

spcolumn spmats

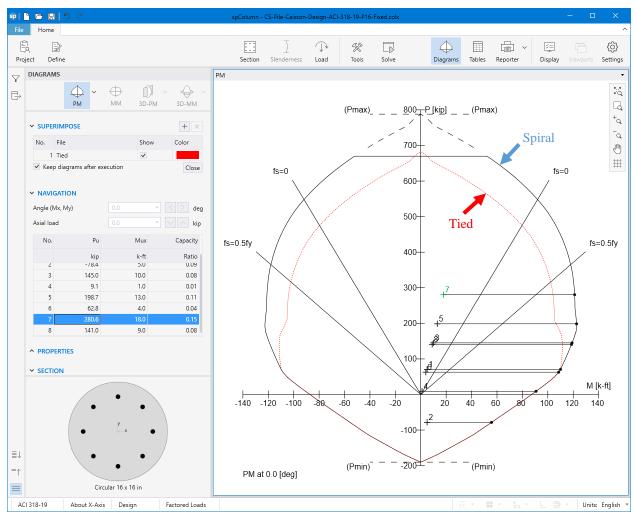


Figure 24 – Tied Confinement vs. Spiral Confinement (spColumn)

5. Summary and Conclusion

<u>spMats</u> provides an efficient platform to model pile-supported foundations by treating piles as vertical springs within a finite element model. This allows engineers to simulate load transfer, assess pile reactions, and verify performance under various load combinations. Additionally, <u>spMats</u> integrates with <u>spColumn</u>, enabling users to export pile reactions and cross-sectional and material properties for detailed design and investigation of individual piles.

The following table shows a summary of important model results

spMats Results Summary								
For Pile Cap								
$A_{s,provided}$ (for areas where $A_{s,min}$ governs)	#9 @ 8 in.							
$A_{s,provided}$ (for areas where $A_{s,req}$ governs)	#9 @ 8 in. + #9 @ 8 in.							
Maximum Uplift	0.125 in.							
Maximum Settlement	0.331 in.							
Punching Shear	Refer to Pile Cap Design Example							
For Piles								
Pile Max. Comp. Reaction	280.58 kips							
Pile Max. Tens. Reaction	78.39 kips							
Pile Allow. Comp. Reaction	230.00 kips							
Pile Allow. Tens. Reaction	50.00 kips							
spColumn Resu	lts Summary							
Pile Diameter	16 in.							
Pile Reinforcement	8 - #6							
Pile Confinement	Tied Transverse Reinforcement							

5.1. Pile Boundary Condition Effect

In spMats, piles are assumed to be pinned to the pile cap leading to axial reactions on the piles that require designing the pile as a compression or tension member. In some cases, piles are fixed to the pile cap, which requires them to resist bending moments in one or both principal axes, in addition to the axial reaction. In this scenario, the pile needs to be treated as a member subjected to biaxial bending (M_x and M_y) due to the moments from both directions of analysis. This requires an investigation of the pile $P-M_x-M_y$ interaction diagram in two directions simultaneously (axial force interaction with biaxial bending). This case study (for the case where the pile is fixed to the pile cap) shows the generation of the three-dimensional failure surface (biaxial M_x-M_y interaction diagram). Generating the three-dimensional failure surface (interaction diagram) for a pile section subjected to a combined axial force and biaxial bending moments is tedious and challenging for engineers and the use of a computer aid can save time and eliminate errors. StucturePoint's spColumn program can, quickly, simply, and accurately generate the three-dimensional failure surface (interaction diagram) for all commonly encountered pile sections in addition to highly complex and irregular cross-sections.

5.2. Tied vs. Spiral Lateral Reinforcement

The choice between tied and spiral confinement in pile design directly influences the strength reduction factors (ϕ) applied in capacity calculations. Spiral-confined piles benefit from higher ϕ values, such as 0.85 for axial compression and 0.75 for compression-controlled sections compared to 0.80 and 0.65 respectively for tied confinement, providing greater usable strength under the same conditions. These values are automatically applied in <u>spColumn</u> based on the selected confinement type. For this case study, tied confinement is sufficient, as demonstrated in the interaction diagram in <u>Section 4.3</u>.

Confinement choices selected by the user dictate the reduction factors for tied, spiral, and user defined types. User must ensure the final designed section is detailed correctly on design drawings in accordance with the corresponding provisions for confinement in the selected code to match the assumptions made in the model.

5.3. Applied Loads Modeling Considerations

When using FEA to model structures like the bridge pier supported by a pile cap in this case study, engineering judgment is essential in accurately determining how loads from the superstructure are transferred to the foundation model. If axial forces and bending moments from the bridge pier are modeled as concentrated point loads applied to a single node, stress concentrations may appear at that location. These concentrations are often numerical artifacts rather than true physical behavior. To reduce such localized effects and achieve more representative results, users can convert these point loads into equivalent area loads distributed over the pier footprint. This distributes the applied forces across multiple nodes, helping to smooth stress gradients and improve model behavior. The approach demonstrated in this case study is an expedient and conservative option for illustration and educational purposes only. It should not be interpreted as a prescriptive or recommended method. Engineers

are advised to exercise professional judgment and adapt modeling techniques based on project-specific requirements and conditions.

5.4. Pile Cap Reinforcement

<u>spMats</u> reports the required area of top and bottom flexural reinforcement per unit width [in.²/ft (US Customary Units) or mm²/m (Metric Units)] in both the X and Y directions. The total area of reinforcement in an element, then, can be obtained by multiplying the reported area of reinforcement by the width of the element.

 A_{sx} reinforcement is placed along X-direction and calculated based on the greater of the design moment, M_{ux} , code minimum reinforcement ratio, or the base reinforcement ratio (if selected) specified by the user. Similarly, A_{sy} reinforcement is placed along Y-direction and calculated based on the greater of the design moment, M_{uy} , code minimum reinforcement ratio, or the base reinforcement ratio (if selected) specified by the user.

Using the conservative load application method in this case study, the provided reinforcement can be postulated based on the reinforcement contours in the following figures. The selection of the reinforcing bar size and spacing as well as the extent to which they are applied is left up to the engineer to choose based on project requirements and standard details. Figure 26 shows one possible reinforcement layout for illustration.

CONCRETE SOFTWARE SOLUTIONS

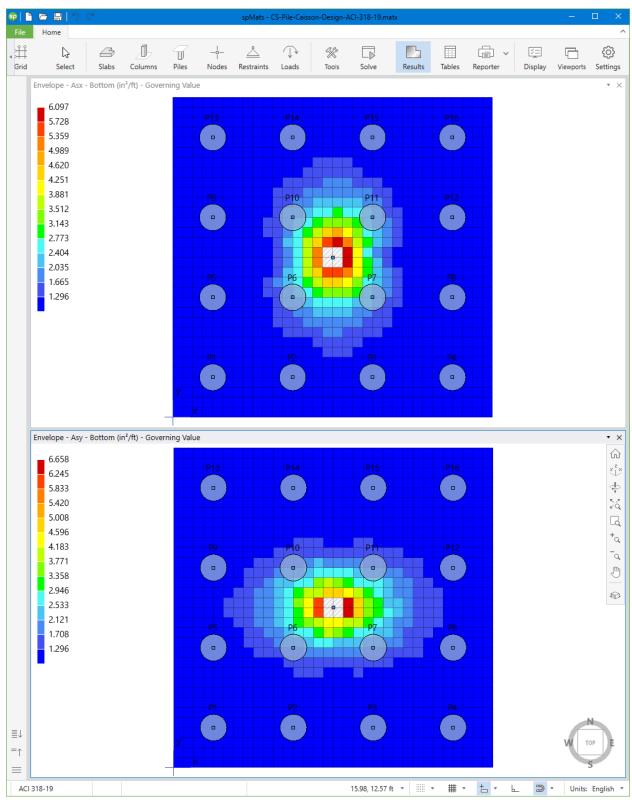


Figure 25 - Pile Cap Reinforcement (spMats)

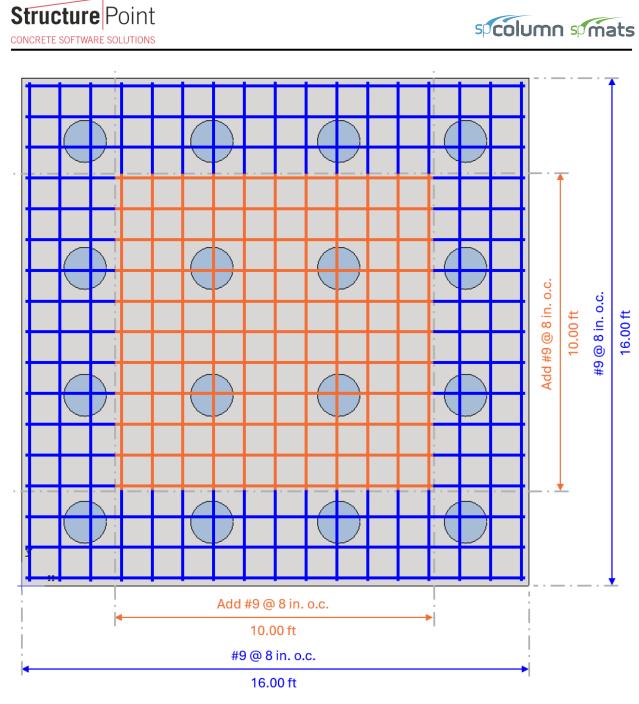


Figure 26 - Pile Cap Provided Reinforcement

5.5. Pile Settlement and Impact on Stiffness

The stiffness of each pile, represented by the spring constant K_p , plays a critical role in modeling pile-supported foundations. K_p is calculated as the ratio of the applied load Q_u to the corresponding settlement *S*, which depends on pile geometry, material properties, and soil conditions. For cohesionless soils, settlement is estimated using an empirical formula incorporating pile diameter *D*, length *L*, cross-sectional area A_p , and modulus of elasticity E_p . Accurate estimation of pile settlement is essential, as it directly influences the stiffness input into the finite element model and therefore affects the load distribution and reaction forces in the overall foundation system. A project geotechnical report may present the values for pile stiffness and the expected maximum compression and tension permissible capacities. In some instances, the corresponding settlement or uplift at various load levels may also be provided to inform the model input and definitions. More information about this topic can be found in <u>Section 2.3.2.2</u>. in <u>spMats Manual</u>.

6. Appendix - Loads, Cases, and Combinations

