

Ground Mounted PV Solar Panel Reinforced Concrete Foundation

Ground Mounted PV Solar Panel Reinforced Concrete Foundation

A ground mounted solar panel system is a system of solar panels that are mounted on the ground rather than on the roof of buildings. Photovoltaic solar panels absorb sunlight as a source of energy to generate electricity. A photovoltaic (PV) module is a packaged, and connected photovoltaic solar cells assembled in an array of various sizes. Photovoltaic modules constitute the photovoltaic array of a photovoltaic system that generates and supplies solar electricity in commercial and residential applications. The most common application of solar energy collection outside agriculture is solar water heating systems. This case study focuses on the design of a ground mounted PV solar panel foundation using the engineering software program <u>spMats</u>. The selected solar panel is known as Top-of-Pole Mount (TPM), where it is deigned to install quickly and provide a secure mounting structure for PV modules on a single pole. All the information provided by the solar panel provider are shown in the following figure and design data section and will serve as input for detailed foundation analysis and design. Because of available soil conditions at the site, a spread footing foundation is selected to resist applied gravity and wind loads as shown in the following figure. The supporting pole is welded to a base plate anchored to a 36" circular concrete pier.

Figure 1 - Solar Panel Foundation Layout Plan

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

spMats Engineering Software Program Manual v8.50, StucturePoint LLC., 2016

Design Data

Concrete Pier

Size = 3.0 ft Diameter Height = 4.0 ft

Concrete Footing

Size = 10.0 ft x 10.0 ft f_c ' = 4,000 psi f_y = 60,000 psi Thickness = 24 in. Clear Cover = 3 in.

Foundation Loads

 $P_{DL} = 2.0$ kips $M_{x,wind} = 90$ kips-ft (Reversible) $M_{y,wind} =$ Not provided

Supporting/Fill Soil

Type = Sandy soil Subgrade Modulus = 100 kcf Allowable Pressure = 2.0 ksf Unit Weight = 135 pcf

Contents

1.	Foundation Analysis and Design – spMats Software	.1
2.	Two-way (Punching) Shear Check - Pier	8
3.	Soil Reactions / Pressure	9
4.	Foundation Model Statistics	10
5.	Column and Pile Design - spColumn	11
6.	2D/3D Viewer	15
7.	Pier Section Optimization	16

CONCRETE SOFTWARE SOLUTIONS

1. Foundation Analysis and Design – spMats Software

<u>spMats</u> uses the Finite Element Method for the structural modeling, analysis and design of reinforced concrete slab systems or mat foundations subject to static loading conditions.

The slab, mat, or footing is idealized as a mesh of rectangular elements interconnected at the corner nodes. The same mesh applies to the underlying soil with the soil stiffness concentrated at the nodes. Slabs of irregular geometry can be idealized to conform to geometry with rectangular boundaries. Even though slab and soil properties can vary between elements, they are assumed uniform within each element. Piles and/or supporting soil are modeled as springs connected to the nodes of the finite element model. Unlike for springs, however, punching shear check is performed around piles.

For illustration and purposes, the following figures provide a sample of the input modules and results obtained from an spMats model created for the ground mounted PV solar panel reinforced concrete footing in this example.

Figure 2 - Solar Panel Foundation Model 3D View

Figure 3 – Defining Concrete Pier

Figure 5 – Assigning Loads

Figure 6 – Assigning Slave Nodes

Slaved nodes are assigned to restrain the rotation about the axis where the moment is applied for the nodes under the concrete pier to simulate the stiffness of the pier above the foundation and to prevent any stress concentrations due to applying the axial load and moments as point loads.

Figure 7 – Vertical (Down) Displacement Contour

Figure 8 – Vertical (Up) Displacement Contour

Figure 9 - Foundation Uplift

In some load cases foundation uplift might occur due to overturning moments. spMats solver provides several soilstructure interaction criteria for the user. As such, the model can be solved to control the amount of allowable uplift and the percentage of the cross-sectional area of the foundation that must remain in contact.

Figure 10 - Soil Pressure Contour

Figure 11 - Moment Contour along Y-Axis

Figure 12 - Moment Contour along X-Axis

The previous figure shows that the minimum reinforcement governs the entire foundation. The minimum reinforcement code values are the define by default and the user can costumize this value to better understand the foundation behavior as follows:

Figure 14 - Required Reinforcement Contour along Y Direction without Defining As,min

CONCRETE SOFTWARE SOLUTIONS

2. Two-way (Punching) Shear Check - Pier

B6 - Punching Shear A	round Colur	nns (Ultimate	e Load Combin	ations):		
Units> Applied She Factored Sh Concrete St Average dep Area (in^2)	ar Force Vu ear Stress rength f'c th (in), Di , Jxx, Jyy,	u (kips), App vu (psi), Fa (psi), dista imensions Bx, Jxy (in^4)	olied Moments actored Shear ances X_Offse By (ft)	Mux, Muy () Resistance t, Y_Offset	(-ft) Phi*vc (ft)	(psi)
Geometry of Resisting	Area					
Column	/	Average[)imensions	Centi	roid	_
Node Label	Location	Depth E	Вх Ву	X_Offset 1		t -
841 C36"	Inner	20.75	4.73 4.7	3 0.00	-0.00	D
Properties of Resisti	ng Area					
Node Column Label	Area	Jxx	Јуу	Jxy	Z	
841 C36"	3695.62	1547941.	25 1547940	.88	0.00	
Ultimate Load Combina	tion: U11					
Factored Applied Fo	rces:					
Node Column Label	Vu	Mux	Gamma_	X Muy	C	Gamma_Y
841 C36"	-2.4	10 10	36.0 0.40	0	-0.0	0.400
Factored Stress and	Capacity:					
				_Critical H	Point	
Node Column Label	vu	f'c	Phi*vc	X_Offset Y_	_Offset	Status
841 C36"	-8	.57 4000.0	189.74	-0.00	-2.36	Safe
B7 - Punching Shear A	round Pile:	s (Ultimate I	load Combinat	ions):		

* No piles assigned

Figure 15 - Two-Way Punching Shear Results around the Column (Pier)

CONCRETE SOFTWARE SOLUTIONS

3. Soil Reactions / Pressure

B3 - REACTIONS:									
Units> Force (kip) Service Load Combinat Sum of all forces	, Moment (kip- ion: S9 and moments wi	ft) th respect to	center of	gravity	(X,	Y) =	(0.00,	0.00)	ft
Sum of Reactions	FΖ	Mx	My						
Soil	32.000	-54.000	-0.000						
Springs	-	-	-						
Piles	-	-	-						
Restraints	-	-	-						
Slaved Nodes	0.000	-0.000	0.000						
Total Reactions	32.000	-54.000	-0.000						
Total Loads	-32.000	54.000	-0.000						

Figure	16 -	Soil	Service	Reactions

B4 - SOIL DISPLACEMENTS AND PRESSURES:								
Units> Displacement (in), Pressure (ksf) Flags> [x] Indicates allowable pressure is exceeded. Service Load Combination: S9								
Elem	Elem Node Disp, Dz Pressure, Qz Node Disp, Dz Pressure, Qz							
1	43 42	-0.0751	-0.626 -0.626	2	-0.0770	-0.642 -0.642		
2	44	-0.0751	-0.626	3	-0.0771	-0.642		
3	45	-0.0751	-0.626	4	-0.0771	-0.642		
4	44 46	-0.0751 -0.0752	-0.626 -0.626	3 5	-0.0771 -0.0771	-0.642 -0.642		
5	45 47	-0.0751 -0.0752	-0.626 -0.626	4 6	-0.0771 -0.0771	-0.642 -0.643		
C	46	-0.0752	-0.626	5	-0.0771	-0.642		
ю	48 47	-0.0752	-0.626	6	-0.0771	-0.643		
7	49 48	-0.0752 -0.0752	-0.627 -0.627	8 7	-0.0771 -0.0771	-0.643 -0.643		
8	50	-0.0752	-0.627	9	-0.0772	-0.643		
9	49 51	-0.0752	-0.627	8 10	-0.0771	-0.643		
10	50 52	-0.0752 -0.0753	-0.627 -0.627	9 11	-0.0772 -0.0772	-0.643 -0.643		

Figure 17 – Soil Pressure

4. Foundation Model Statistics

Since spMats is utilizing finite element analysis to model and design the foundation. It is useful to track the number of elements and nodes used in the model to optimize the model results (accuracy) and running time (processing stage). spMats provides model statistics to keep tracking the mesh sizing as a function of the number of nodes and elements.

Star	tup Defaults	Autosave	Display	Statistics
3	Statistics			
	odes Nodes	1681	Elements	1600
_ De	efinitions			
	Thickness	1	Nodal Loads	2
	Concrete	1	Design Param.	1
	Soil	1	Nodal Springs	0
	Reinforced Steel	1	Slaved Nodes	1
	Surface Loads	0	Load Combos	24

Figure 18 – Model Statistics

CONCRETE SOFTWARE SOLUTIONS

5. Column and Pile Design - spColumn

spMats provides the options to export column and pile information from the foundation model to spColumn. Input (CTI) files are generated by spMats to include the section, materials, and the loads from the foundation model required by spColumn for strength design and investigation of piles and columns. Once the foundation model is completed and successfully executed, the following steps illustrate the design of a sample column.

Figure 19 – Exporting CTI Files

Export to spColumn CTI Files							
-Run Option	Structural Member						
C Investigation	Columns						
Design	Piles						
Material Properties							
fc: 4 ksi	fy: 60 ksi						
Reinforcement	Reinforcement						
Bar set: ASTM A615							
Minimum	Maximum						
No. of bars: 16	32						
Bar size: #6 💌	#14 💌						
Clear cover (Longitudinal Bars) 3 in							
Eliminate duplicate loads							
OK Cancel							

Figure 20 – Exporting CTI Files Dialog Box

After exporting spColumn input files, the pile and column design/investigation can proceed/modified to meet project specifications and criteria. In the following the column design results are shown as an example.

Figure 21 - Pier Interaction Diagram with Factored Load

Figure 22 – Pier 3D Failure Surfaces

6. 2D/3D Viewer

2D/3D Viewer is an advanced module of the spColumn program. It enables the user to view and analyze 2D interaction diagrams and contours along with 3D failure surfaces in a multi viewport environment.

2D/3D Viewer is accessed from within spColumn. Once a successful run has been performed, you can open 2D/3D Viewer by selecting the **2D/3D Viewer** command from the **View** menu. Alternatively, 2D/3D Viewer can also be accessed by clicking the 2D/3D Viewer button in the program toolbar.

Figure 23 – 2D/3D View for Pier

7. Pier Section Optimization

To further optimize pier design, it was agreed with the builder that 16#6 reinforcement cage can be used for this pier. The following figure illustrate the reduced axial strength capacity is adequate to resist the maximum pier loading. More information about the structural vs architectural columns are provided in "<u>Columns with Low</u> <u>Reinforcement - Architectural Columns</u>" technical article.

Figure 24 – Superimpose Feature