

Reinforced Concrete Cantilever Retaining Wall Analysis and Design (ACI 318-14)

Reinforced Concrete Cantilever Retaining Wall Analysis and Design (ACI 318-14)

Reinforced concrete cantilever retaining walls consist of a relatively thin stem and a base slab. The stem may have constant thickness along the length or may be tapered based on economic and construction criteria. The base is divided into two parts, the heel and toe. The heel is the part of the base under the backfill. This system uses much less concrete than monolithic gravity walls, but require more design and careful construction. Cantilever retaining walls can be precast in a factory or formed on site and considered economical up to about 25 ft in height. This design example focuses on the analysis and design of a tapered cantilever retaining wall including a comparison with model results from the engineering software programs <u>spWall</u> and <u>spMats</u>. The retaining wall is fixed to the reinforced concrete slab foundation with a shear key for sliding resistance. The following figure and design data section will serve as input for detailed analysis and design.

Figure 1 - Cantilever Retaining Wall Dimensions

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

- Design of Concrete Structures, 15th Edition, 2016, Darwin et. al., McGraw-Hill Education, Example 16.8
- spWall Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2022
- spMats Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2020

Design Data

Wall Stem Materials	Wall Foundation Materials
f_c ' = 4,500 psi	f_c ' = 4,500 psi
$f_y = 60,000 \text{ psi}$	$f_y = 60,000 \text{ psi}$
$\gamma_c = 150 \text{ pcf}$	$\gamma_c = 150 \text{ pcf}$

Wall Stem Dir	mensions	Wall Foundat	ion Dimensions
Width =	= 1 ft strip	Width	= 1 ft strip
Height =	= 13.5 ft	Length	= 9.75 ft
Thickness =	= 8 in. top	Thickness	= 18 in.
=	= 16 in. bottom		

Retaining Wall Loads

The following figure shows all the loads applied to the cantilever retaining wall where:

$$W_1 = 0.67 \times 13.5 \times 150 = 1360$$
 lb

- $W_2 = 0.67 \times 0.5 \times 13.5 \times 150 = 680$ lb
- $W_3 = 9.75 \times 1.5 \times 150 = 2190$ lb
- $W_4 = 1.33 \times 1.25 \times 150 = 250$ lb
- $W_5 = 3.75 \times 2 \times 120 = 900$ lb
- $W_6 = 0.67 \times 0.5 \times 13.5 \times 120 = 540$ lb
- $W_6 = 4.67 \times 13.5 \times 120 = 7570$ lb

Figure 2 – Applied Loads and Soil Pressure at Critical Sections

Contents

1.	Preliminary Design	1
2.	Wall Stability Checks	3
	2.1. Wall Overturning Check	3
	2.2. Soil Bearing Pressure	4
	2.3. Wall Sliding Check	5
3.	Flexural Reinforcement Requirements	6
4.	Cantilever Retaining Wall Analysis and Design – spWall Software	8
	4.1. Cantilever Retaining Wall Model Input	9
	4.2. Cantilever Retaining Wall Result Contours	12
	4.3. Cantilever Retaining Wall Cross-Sectional Forces	14
	4.4. Cantilever Retaining Wall Maximum Displacement	18
	4.5. Cantilever Retaining Wall Cross-Sectional Forces at Stem Base	18
	4.6. Cantilever Retaining Wall Reinforcement	19
5.	Cantilever Retaining Wall Foundation Analysis and Design – spMats Software	20
	5.1. Cantilever Retaining Wall Foundation Model Input	20
	5.2. Cantilever Retaining Wall Foundation Result Contours	27
	5.3. Cantilever Retaining Wall Foundation Required Reinforcement	33
	5.4. Soil Reactions / Pressure	35
	5.5. Cantilever Retaining Wall Foundation Mesh Status	36
6.	Cantilever Retaining Wall Analysis and Design Results Comparison & Conclusions	37

Structure Point CONCRETE SOFTWARE SOLUTIONS

1. Preliminary Design

The thickness of the footing is roughly estimated to calculate the required thickness of the stem at the critical section (stem bottom). With the bottom of the footing at 3.5 ft below grade and an estimated footing thickness of 1.5 ft, the free height of the stem is 13.5 ft. using the information provided in Figures 1 and 2:

 $P = 0.5 \times 0.333 \times 120 \times 13.5 \times (13.5 + 2 \times 3.33) = 5440$ lb (at the stem bottom)

 $y = \frac{13.5^2 + 3 \times 13.5 \times 3.33}{3 \times (13.5 + 2 \times 3.33)} = 5.25 \text{ ft}$

 $M_{\mu} = P_{\mu} \times y = 1.6 \times 5440 \times 5.25 = 45.7$ ft-kip

The preliminary dimensions are selected using design aids from the reference Appendix A.

$$\rho_{0.005} = 0.85 \times \beta_1 \times \frac{f_c}{f_y} \times \frac{0.003}{0.003 + 0.005}$$

$$\frac{Reference \ 1 \ (Table \ A.4)}{6000} \times \frac{0.003}{0.003 + 0.005} = 0.0197$$

The reference recommends the use of a ratio of about 40% of the maximum ($\rho = 0.008$) for economy and ease of bar placement.

$$\frac{M_u}{\phi \times b \times d^2} = 430$$
Reference 1 (Graph A.1b)

$$d = \sqrt{\frac{45700 \times 12}{0.9 \times 12 \times 430}} = 10.9$$
 in.

Using cover of 2 in. for members exposed to weather or in contact with ground. <u>ACI 318-14 (Table 20.6.1.3.1)</u> And #8 bars ($d_b = 1$ in.), the minimum required thickness of the stem at the base equals:

minimum
$$t_{stem,base} = d_{min} + \text{cover} + \frac{d_b}{2} = 10.9 + 2 + \frac{1}{2} = 13.4 \text{ in.}$$

Use $t_{stem,base} = 16$ in.

For Shear Check (at distance d above the base):

 $P = 0.5 \times 0.333 \times 120 \times 12.5 \times (12.5 + 2 \times 3.33) = 4800$ lb

$$V_{\mu} = 1.6 \times P = 1.6 \times 4800 = 7680$$
 lb

$$\phi V_{c} = \phi \times 2 \times \lambda \times \sqrt{f_{c}} \times b \times d^{2}$$

$$\phi V_{c} = 0.75 \times 2 \times 1 \times \sqrt{4500} \times 12 \times 13.5^{2} = 16300 \text{ lb} > V_{u}$$

$$ACI 318-14 (22.5.5.1)$$

Stem thickness of 16 in. is adequate to resist the factored shear force.

The thickness of the foundation (base) is the same as or slightly larger than that at the bottom of the stem. Thus, the 18 in. selected earlier need not be revised. The stem thickness can be reduced by tapering one side only up to 8 in. at the top since the bending moment decreases with increasing distance from the wall base to zero at the top of the wall.

2. Wall Stability Checks

The wall has two failure modes: 1) Wall parts may not be strong enough to resist the acting forces, 2) the wall as a rigid body may be displaced or overturned by the earth pressure acting on it. The latter will be discussed in this section to ensure that the retaining wall is stable by checking stability against overturning, sliding, and allowable soil bearing pressure.

Note: two cases are being examined. Case 1 where surcharge load is applied to point a (see Figure 3), and Case 2 where surcharge load is applied to point b.

2.1. Wall Overturning Check

Case 1 governs for wall overturning since it generated the highest overturning with the least resistance.

Weights and moments about the front edge of the wall are shown in the following table (See figure 2 and design data section):

Table 1 -	Weights and Moments	s about the Front Edg	ge
component Weights	W, kips	x, ft	M _r , ft-kip
W_1	1.36	4.08	5.55
W2	0.68	4.67	3.18
W ₃	2.19	4.88	10.69
W_4	0.25	4.42	1.11
W5	0.90	1.88	1.69
W ₆	0.54	4.86	2.62
W ₇	7.57	7.42	56.17
Total	13.49		81.00

 $P = 0.5 \times 0.333 \times 120 \times 15 \times (15 + 2 \times 3.33) = 6.49$ kips

$$y = \frac{15^2 + 3 \times 15 \times 3.33}{3 \times (15 + 2 \times 3.33)} = 5.77 \text{ ft}$$

The overturning moment is equal to:

 $M_o = P \times y = 6492 \times 5.77 = 37.46$ ft-kip

Factor of Safety against overturning:

$$FOS_{overturning} = \frac{81.00}{37.46} = 2.16 > 1.5 \text{ (o.k.)}$$

2.2. Soil Bearing Pressure

The distance of the resultant force from the base slab front edge is:

$$a = \frac{81.00 - 37.46}{13.49} = 3.23 \text{ ft} \approx \frac{9.75}{3} = 3.25 \text{ ft}$$

The resultant is barely outside the middle third of the foundation (it is assumed that the bearing pressure becomes zero exactly at the edge of the heel as shown in Figure 2). The maximum soil pressure at the toe is calculated as follows:

$$q_{1} = \frac{2 \times R_{\nu}}{3 \times a} \qquad \qquad \underline{Reference 1 (Figure 16.5c)}$$

$$q_{1} = \frac{2 \times 13.49 \times 1000}{3 \times 3.23} = 2784 \text{ psf} < q_{allowable} = 8000 \text{ psf (o.k.)}$$

$$q_{2} = 0 \qquad \qquad \underline{Reference 1 (Figure 16.5c)}$$

The soil pressure values calculated for Case 1. The soil pressure values for Case 2 do not govern for overturning and sliding. However, values calculated from Case 2 are needed for foundation flexural design as follows:

- $q_{1} = (4 \times l 6 \times a) \frac{R_{v}}{l^{2}}$ $q_{1} = 2710 \text{ psf} < q_{allowable} = 8000 \text{ psf (o.k.)}$ $q_{2} = (6 \times a 2 \times l) \frac{R_{v}}{l^{2}}$ <u>Reference 1 (Figure 16.5a)</u>
- $q_2 = 492 \text{ psf} < q_{allowable} = 8000 \text{ psf (o.k.)}$

2.3. Wall Sliding Check

Case 1 also governs for sliding since it produces the least pressure and corresponding friction resistance.

The coefficient of friction that applies for the length along the heel and key is 0.5, while the coefficient of friction for the length in front of the key is equal to the internal soil friction, that is, $\tan 30^\circ = 0.577$. More information about selecting the friction coefficient can be found in the reference in chapter 16 section 4. (for case where surcharge load is applied to point a):

Friction, toe:

 $F_{\text{toe}} = 0.5 \times (2784 + 1713) \times 3.75 \times 0.577 = 4.87 \text{ kips}$

Friction, heel and key:

 $F_{\text{heel and key}} = 0.5 \times 1713 \times 6 \times 0.5 = 2.57 \text{ kips}$

Passive earth pressure:

 $P_{passive} = 0.5 \times 3.0 \times 120 \times (4.75 - 1.5)^2 = 1.90$ kips

Note that the top 1.5 ft layer of soil is discounted in this check as unreliable.

Total:

 $F_{total} = 4.87 + 2.57 + 1.90 = 9.34$ kips

Factor of Safety against sliding:

 $FOS_{sliding} = \frac{9.34}{6.49} = 1.44 \approx 1.5$ (can be regarded as adequate)

Thus, the retaining wall with the selected geometry is externally stable.

CONCRETE SOFTWARE SOLUTIONS

3. Flexural Reinforcement Requirements

The required flexural reinforcement is traditionally calculated at three critical sections: at the stem base, the toe and heel at the face of the stem.

Calculate the required reinforcement to resist the moment at the stem base:

$$M_u = 45.7 \,\mathrm{kip}$$
-ft

Use #8 bars with 2.0 in. concrete cover per <u>ACI 318-14 (Table 20.6.1.3.1)</u>. The distance from extreme compression fiber to the centroid of longitudinal tension reinforcement, d, is calculated below:

$$d = 16 - (2 + 0.5 \times 1) = 13.5$$
 in

To determine the area of steel, assumptions have to be made whether the section is tension or compression controlled, and regarding the distance between the resultant compression and tension forces along the beam section (*jd*). In this example, tension-controlled section will be assumed so the reduction factor ϕ is equal to 0.9, and *jd* will be taken equal to 0.95*d*. The assumptions will be verified once the area of steel is finalized.

$$jd = 0.95 \times d = 0.95 \times 13.5 = 12.83$$
 in.

b = 12 in.

The required reinforcement at initial trial is calculated as follows:

$$A_s = \frac{M_u}{\phi \times f_y \times jd} = \frac{45.7 \times 12,000}{0.9 \times 60,000 \times 12.83} = 0.79 \text{ in.}^2$$

Recalculate 'a' for the actual A_s = 0.79 in.²: $a = \frac{A_s \times f_y}{0.85 \times f'_c \times b} = \frac{0.79 \times 60,000}{0.85 \times 4500 \times 12} = 1.04$ in.

$$c = \frac{a}{\beta_1} = \frac{1.04}{0.83} = 1.25 \text{ in.}$$

$$\varepsilon_t = \left(\frac{0.003}{c}\right) \times d_t - 0.003 = \left(\frac{0.003}{1.25}\right) \times 13.5 - 0.003 = 0.0293 > 0.005$$

Therefore, the assumption that section is tension-controlled is valid.

$$A_s = \frac{M_u}{\phi \times f_y \times (d - a/2)} = \frac{45.7 \times 12,000}{0.9 \times 60,000 \times (13.5 - 1.04/2)} = 0.78 \text{ in.}^2$$

The minimum reinforcement shall not be less than

$$A_{s,\min} = \frac{3 \times \sqrt{f_c}}{f_y} \times b \times d = \frac{3\sqrt{4,500}}{60,000} \times 12 \times 13.5 = 0.54 \text{ in.}^2$$
ACI 318-14 (9.6.1.2(a))

And not less than

$$A_{s,\min} = \frac{200}{f_y} \times b \times d = \frac{200}{60,000} \times 12 \times 13.5 = 0.54 \text{ in.}^2$$
ACI 318-14 (9.6.1.2(b))

$$\therefore A_{s,\min} = 0.54 \text{ in.}^2$$

Maximum spacing allowed:

Check the requirement for distribution of flexural reinforcement to control flexural cracking:

$s = 15 \left(\frac{40000}{f_s}\right) - 2.5c_c \le 12 \left(\frac{40000}{f_s}\right)$	<u>ACI 318-14 (Table 24.3.2)</u>
$c_c = 2.0$ in.	
Use $f_s = \frac{2}{3} f_y = 40,000$ psi	<u>ACI 318-14 (24.3.2.1)</u>
$s = 15 \times \left(\frac{40,000}{40,000}\right) - 2.5 \times 2.0 = 10$ in. (Governs)	
$s = 12 \times \left(\frac{40,000}{40,000}\right) = 12$ in.	

Provide #8 bars at 9 in. on centers.

Note that the stem bending moment decreases rapidly with increasing distance from the bottom. For this reason, only part of the main reinforcement is needed at higher elevations and alternate bars can be discontinued where no longer needed. More information about cutting bars in the stem are provided in the reference. All the values in the following table are calculated based on the procedure outlined above for the stem.

Table 2	2 – Reinforcing Design Sum	imary	
Critical Section	Stem Base	Toe	Heel
Design Moment, Mu (ft-kips)	45.7	24.3	29.9
Effective depth, d (in.)	13.5	14.5	14.5
$A_{s,req}$ (in. ²)	0.78	0.38	0.47
$A_{s,min}$ (in. ²)	0.54	0.58	0.58
Reinforcement	#8 @ 9 in.	#7 @ 12 in.	#7 @ 12 in.

CONCRETE SOFTWARE SOLUTIONS

4. Cantilever Retaining Wall Analysis and Design – spWall Software

<u>spWall</u> is a program for the analysis and design of reinforced concrete shear walls, tilt-up walls, precast walls, retaining walls, tank walls and Insulated Concrete Form (ICF) walls. It uses a graphical interface that enables the user to easily generate complex wall models. Graphical user interface is provided for:

- Wall geometry (including any number of openings and stiffeners)
- Material properties including cracking coefficients
- Wall loads (point, line, and area),
- Support conditions (including translational and rotational spring supports)

<u>spWall</u> uses the Finite Element Method for the structural modeling, analysis, and design of slender and nonslender reinforced concrete walls subject to static loading conditions. The wall is idealized as a mesh of rectangular plate elements and straight-line stiffener elements. Walls of irregular geometry are idealized to conform to geometry with rectangular boundaries. Plate and stiffener properties can vary from one element to another but are assumed by the program to be uniform within each element.

Six degrees of freedom exist at each node: three translations and three rotations relating to the three Cartesian axes. An external load can exist in the direction of each of the degrees of freedom. Sufficient number of nodal degrees of freedom should be restrained in order to achieve stability of the model. The program assembles the global stiffness matrix and load vectors for the finite element model. Then, it solves the equilibrium equations to obtain deflections and rotations at each node. Finally, the program calculates the internal forces and internal moments in each element. At the user's option, the program can perform second order analysis. In this case, the program takes into account the effect of in-plane forces on the out-of-plane deflection with any number of openings and stiffeners.

In <u>spWall</u>, the required flexural reinforcement is computed based on the selected design standard (ACI 318-14 is used in this case study), and the user can specify one or two layers of wall reinforcement. In stiffeners and boundary elements, <u>spWall</u> calculates the required shear and torsion steel reinforcement. Wall concrete strength (in-plane and out-of-plane) is calculated for the applied loads and compared with the code permissible shear capacity.

For illustration purposes, the following figures provide a sample of the input modules and results obtained from an <u>spWall</u> model created for the cantilever retaining wall in this design example.

4.1. Cantilever Retaining Wall Model Input

SP	6	<u>רן</u>	Cal.				spWall	- Cantilever	Retaining W	all.walx					- 🗆	×
File	Hom	e														^
E) Proj	ect D) efine	≎∰ Grid	↓ Select	Plates	Stiffeners	-¦- I Nodes	 Restraints	↓ Loads	Solve	Resul	ts Tables	Reporter) Display	Viewports	ැබූ Settings
	PROJECT	г					Model	View (Load (Case: A - De	ead)						• ×
	Desic	in code	ACL	318-14		Ŧ										ŵ
	Unite	ourtem	Engl	ich		* \						\frown	\frown			× ¹ ×
	Unit	system	Engl	isn		• /						(\mathbf{A})	(B)			4) 5.2
												\bigvee				ra L
										\sim		- - -				+a
										(1)	i				-q.
										\sim						1
												w N	/8			
												w	10			
											0					
											3.5	W	12			
											· ·	•				
	✓ DESC	CRIPTION														
	Proj	ect Name											14			
	Des	ign of A C	antilever Ref	taining Wall												
	Proj	ect Descrip	otion													
	Des By I	ign of Cor	ncrete Struct	ures 15th Ed	ition											
	by t	barwin, ba														
												w	16			
	Proj	ect Date	11/17/202	22		7										
	Proj	ect Time	10:30 AM			Ð				\frown		Y Y				
= 1										0))	-	<u> </u>			
≡↓ =↑	✓ DISP	LAY OPTI	ONS							\sim	/	1	1		FR	DNT
	Load	Case	A - [Dead	• <	> 5										
ACI	318-14											- # ·	• <mark>+ </mark> •	- 3	• Units:	English 🔻

Figure 5 - Assigning Soil Loads for Cantilever Retaining Wall (spWall)

SP	6	<u>ଲା</u> ୭ ୯				spWall	- Cantilever f	Retaining Wa	ll.walx					- 0	×
File	Hor	me													^
Proi	iect	Define Grid	Select PL	ates	Stiffeners		 Restraints	↓ Loads	Solve	Results	Tables	Beporter	∑ <u>=</u> Display	Viewports	ැබූ Settings
T IO	COLVE	benne ond	Select	ates	Sanchers	Inducs	- La	Eoddis	50/72	Nesures	idbic3	Reporter	Dispidy	vicuports	Settings
	SOLVE					Solve (f	vlesh)								• ×
															ش
				Ē							_				×Ţ×
				F	tun					(Δ	(\mathbf{B})			¢ P
	~ 50										\mathcal{Y}	Ÿ			26
	Rui	n Options		ign 🔻							1.0	00			Q
	Inc	lude 2nd Order Effects	Yes	*					\frown						+q.
	Ma	x. allowed Out-of-Plane	H/150	*					(1)- <u>1</u> -					-a
	Use	er Defined allowed							\sim						Ð
	Def	flection			in										
		Check Concrete Shear Str	ength of Wall Cro	ossectio	ns										\odot
	~	ACI with Solid walls only)												
	(Use Simplified Equation	ons												
		Use Detailed Equation	ns (uniform walls (only)											
	~ ME	SH OPTIONS													
	Ma	x. allowed mesh size		0.25	ft										
	Ma	x. allowed aspect ratio	26	36											
	Circ	cie segments	30	*											
	~	Status													
		Number of elements		216	f+										
		Max. element size		0.25	ft										
		Max. aspect ratio		1.00											
										0					
										3.5					
										<u></u>					
									~		У				
	Y DIS	PLAY OPTIONS				-			(n	Դ_≰_	2	٢			
≣↓		Wall Element Numbers	Node Numbe	rs					U)				FRO	DNT
=↑ =		Stiffener Element Numbers			V=									• et =	
AC	318-14	L									₩.+	± - ⊦	5	• Units:	English 🔻
1.0													-	511151	

Figure 6 – Solve and Mesh Options (spWall)

4.2. Cantilever Retaining Wall Result Contours

Figure 7 - Factored Axial Force Contour (spWall)

● [] > 문 [] >	pWall - Cantilever Retaining Wall.walx	– 🗆 X
File Home		^
Ex Ex C Project Define Grid Select Plates Stiffeners	des Restraints Loads Solve Results Tables	Reporter Display Viewports Settings
RESULTS	velope - Service Displacements - Dz (+ve) (in)	• ×
Diagrams Contours	0.154 0.143	(i) 2 2 2
 Envelope Social Disclosure of the second secon	0.132	d∎ a
 Service Displacements Dx (+ve) 	0.121	24
Dx (-ve)	0.110	H G
Dy (+ve)	0.088	+a +
Dy (-ve) Dz (+ve)	0.077	T a
Dz (-ve)	0.066	-
> Plate Reinforcement	0.055	
Service Ultimate	0.044	
	0.011	
	0.000	
	TH4	
	- H	
✓ DISPLAY OPTIONS	24	
≣↓ I Elements I Deformed Shape		
=↑ Node Numbers ✓ Undeformed Shape	1	Rom.
Element Numbers Scale 167		N 2 8
ACI 318-14	0.37, 13.43 (ft) 🔹 🏢 🔹 🇰 🔹	🛨 🔹 🖢 🗢 Units: English 🔹
✓ DISPLAY OPTIONS ✓ Elements ✓ Deformed Shape ✓ Node Numbers ✓ Undeformed Shape Element Numbers Scale 167 ✓	0.37, 13.43 (t) * # *	t · L · Units: English

Figure 8 – Lateral Displacement Contour (Out-of-Plane) (spWall)

4.3. Cantilever Retaining Wall Cross-Sectional Forces

9 🗅	► 🛛 '	୨୯				spWall	- Cantilever	Retaining W	/all.walx					- 🗆	×
File	Home														^
Proje	t Define	≎ Grid	↓ Select	Plates	Stiffeners		 Restraints	↓ Loads	Solve	Results	Tables	Reporter) Display	Viewports	ැබූ Settings
F	ESULTS					Wall Cr	oss-Sectiona	l Forces - I	Nuy - 1.2D+1	I.6H (kips)					• ×
				↓ Diagrams	Contours										
3	Stiffener li	nternal Forces				1					0.000				⊊ <mark>L</mark> ⊃
ì	 Wall Cross Nuv 	-Sectional Fo	rces												26
	1.2	D+1.6H													Q
	0.9	D+1.6H													+°,
	> Vuz														_0,
	> Mux														0
	> Muy > Muz														\odot
3	Wall Conc	rete Shear Str	ength												
	 DISPLAY 	OPTIONS													
-			✓ Fill Dia	grams		1									
			✓ Show	/alues						У					
≣↓			✓ Min/M	ax only					-2	2.438	х			FR	DNT
=↑		hear Force	Size	200 %	V.					I				- at	
ACI 3	18-14							-2	.45, 14.23 (ft)	-	· # ·	± • 6	3	• Units:	English 🔻

Figure 9 – Axial Load Diagram (spWall)

SP	6	∋ 🛛 າ					spWall	- Cantilever l	Retaining V	/all.walx					- 0	×
File		Home														^
Pro	ject	Define	o∰ Grid	Select	Plates	Stiffeners	-¦ I Nodes	 Restraints	↓ Loads	Solve	Results	Tables	Reporter	<u>∵</u> Display	Viewports	ැබූ Settings
	RES	SULTS					Wall Cr	oss-Sectiona	l Forces -	Vuz - 0.9D+	1.6H (kips)					• ×
						Cantaurr										(ن) پر ت
	>				Diagrams	contours						0.000				
	•	Wall Cross-Se	ectional Forces	5												
		> Nuy														кq
		> Vux														+_
		1.2D+	+1.6H													_
		0.9D+	+1.6H													,m
		> Mux > Muy														
		> Muz														®
	>	Wall Concret	e Shear Streng	gth												
	~	DISPLAY OP	TIONS													
				✓ Fill Dia	grams											
				✓ Show	values						У					
≣↓				✓ Min/M	lax only						_	х 8	8.700		FRO	DNT
=↑ 			ar Force	Size	200 %	V=					I				• etc	
	1 2 1 4	2-14								170 1/ 20 /0	\ . .	, ## -	+ - 1	5	r Huite:	English *
AC	1010	2-14							-	1.79, 14.20 (π	/ ' '	## *		2	Units:	english *

Figure 10 – Out-of-Plane Shear Diagram (spWall)

SP	5	⊳ ⊟ າ	C.				spWall	- Cantilever l	Retaining W	all.walx					- 🗆	×
File		Home														^
Pro	iect	Define	Grid	↓ Select	Plates	Stiffeners		 Restraints	Loads	Solve	Results	Tables	Reporter	∬= Display	Viewports	ැබූ Settings
	RE	SULTS					Wall Cr	nes-Sections	Eorces -	Mux - 12D+	1.6H (kip-ft)					• ×
	NL.	50213			l <u>↓</u> Diagrams	Contours	waii Ch	oss-sectiona	Il Forces -	viux - 1.2D+	1.6н (кір-іі)					۰× پر
	>	Stiffener Inter	rnal Forces									0.000				d p
	~	Wall Cross-Se	ectional Forces	;												28
		> Nuy > Vuy														G
		> Vuz														+
		✓ Mux														-
		1.2D+	-1.6H													ζm
		> Muv	- 1.0H													\sim
		> Muz														
	>	Wall Concrete	e Shear Streng	th												
												-				
	~	DISPLAY OP	TUNS													
				Fill Dia	agrams						У					
≣↓				- Show	values							х	15.639			
=↑				✓ Min/N	lax only						+				- er	
			ar Force	Size —	200 %	V <u> </u>									_	
AC	31	8-14							-2	2.03, 14.25 (ft)	•	# *	± • 6		" Units:	English 🔻

Figure 11 – Bending Moment Diagram (spWall)

CONCRETE SOFTWARE SOLUTIONS

SP [6	⊟ ୭	Çi				spWall	- Cantilever	Retaining W	all.walx					- 🗆	×
File	Ho	ome														^
E, Proj	م ject	Define	∰ Grid	↓ Select	Plates	Stiffeners	 Nodes	 Restraints	↓ Loads	Solve	Results	Tables	Reporter	j≍ Display	Viewports	ැබූ Settings
	RESU	LTS					Envelop	e - Plate Re	inforcemer	nt - Asy (in²/ft	t)					• ×
					N_ →		_ 0.7	92								ŵ
					Diagrams	Contours	0.7	40								× ×
	❤ Er	nvelope					0.6	88								÷
	Ý	Plate Rein	spiacements forcement				0.6	36								54
		Asx					0.5	84 32								G.
	> Se	Asy					0.4	80								†q,
	> UI	ltimate					0.4	27								Q, Mb
							0.3	75								<u> </u>
							0.3	23 71								\odot
							0.2	19								
							0.1	67								
							0.1	15								
							LT -									
	Y DI	SPLAY OPT	IONS								У					
≣↓	~	Elements			med Shape							x			FR	DNT
=↑		Node Num	bers												- ez -	
\equiv		Element Nu	umbers	Scale —	167											
AC	1 318-1	4							-3	.36, 13.08 (ft)	•	# *	+ - ⊾	5	Units:	English 🔻

<u>Figure 12 – Required Vertical Reinforcement (spWall)</u> (Note: Minimum reinforcement value shown is based on the top wall stem thickness of 8" while the hand calculations show the minimum required at the wall stem base with 16" thickness)

4.4. Cantilever Retaining Wall Maximum Displacement

1. Results 1.1. Service 1.1.1. Nodal Displacements 1.1.1.1. 1.0D+1.0H

Coordinate System: Global

Node	Dx	Dy	Dz	
	in	in	in	
271	0.000	0.000	0.154	
272	0.000	0.000	0.154	
273	0.000	0.000	0.154	
274	0.000	0.000	0.154	
275	0.000	0.000	0.154	

Figure 13 - Displacement at Critical Section (Service Combinations) (spWall)

1.2. Ultimate

1.2.1. Nodal Displacements

1.2.1.1. 1.2D+1.6H

Coordinate System: Global

Node	Dx	Dy	Dz
	in	in	in
271	0.000	0.000	0.246
272	0.000	0.000	0.246
273	0.000	0.000	0.246
274	0.000	0.000	0.246
275	0.000	0.000	0.246

Figure 14 – Displacement at Critical Section (Ultimate Combinations) (spWall)

4.5. Cantilever Retaining Wall Cross-Sectional Forces at Stem Base

1.2.2. Wall Cross-Sectional Forces

1.2.2.1. 1.2D+1.6H

Coordinate System: Global (+) Horizontal cross-section above Y-coordinate

(-)Ho	orizontal c	cross-section below Y-	coordinate						
		Wall Crossection		In-Pl	ane Forces		Out-Of	-Plane Forces	
	No.	Y coordinate	X-Centroid	Vux	Nuy	Muz	Vuz	Mux	
		ft	ft	kips	kips	kip-ft	kips	kip-ft	
	1+	0.00	0.50	0.00	-2.44	0.00	8.70	45.64	

Figure 15 – Wall Cross-Sectional Forces (spWall)

Muy kip-ft

0.00

 Rho
 Tie

 %

 0.20

 0.20

 0.41

 0.20

 0.41

 0.20

 0.41

 0.20

4.6. Cantilever Retaining Wall Reinforcement

. Plate Fle	xure Reinf o	orcement			$A_{s,avg} = 0.78$
Element	Curtains	Direction	Mu (x/y)	Nu (x/y) Ld Comb.	As (x/y)
			kip-ft/ft	klf	in²/ft
[1]	1	Horizontal	8.00	-0.40 0.9D+1.6H	0.384
		Vertical	46.16	-1.80 0.9D+1.6H	0.777
2	1	Horizontal	9.34	-0.24 0.9D+1.6H	0.384
		Vertical	47.07	-1.78 0.9D+1.6H	0.792
3	1	Horizontal	9.34	-0.24 0.9D+1.6H	0.384
		Vertical	47.07	-1.78 0.9D+1.6H	0.792
4	1	Horizontal	8.00	-0.40 0.9D+1.6H	0.384
		Vertical	46.16	-1.80 0.9D+1.6H	0.777
		Elements along	the wall base		

Figure 16 - Required Vertical Reinforcement (spWall)

CONCRETE SOFTWARE SOLUTIONS

5. Cantilever Retaining Wall Foundation Analysis and Design - spMats Software

<u>spMats</u> uses the Finite Element Method for the structural modeling, analysis and design of reinforced concrete slab systems or mat foundations subject to static loading conditions.

The slab, mat, or footing is idealized as a mesh of rectangular elements interconnected at the corner nodes. The same mesh applies to the underlying soil with the soil stiffness concentrated at the nodes. Slabs of irregular geometry can be idealized to conform to geometry with rectangular boundaries. Even though slab and soil properties can vary between elements, they are assumed uniform within each element. Piles and/or supporting soil are modeled as springs connected to the nodes of the finite element model.

For illustration purposes, the following figures provide a sample of the input modules and results obtained from an <u>spMats</u> model created for the cantilever retaining wall foundation in this design example.

5.1. Cantilever Retaining Wall Foundation Model Input

Figure 17 - spMats Interface

9							spMats - Can	tilever Reta	ining Wall F	oundation.m	atx						- 🗆	
File	н	ome																^
Proj	ect	Define	°∰ Grid		Select	Slabs	Columns	Piles		 Restraints	↓ Loads	Solve	Contours	Tables	Reporter) Display	Viewports	දිබු Settings
	LOAD)S				Model Viev	v (Load Case	: B - Soil L	ateral)									• ×
		✓ Loads Load Case Pz		B - Soil Lateral	Area Point Area View Content of the second													(€ م' م' م' م
	× 0	Mx My PTIONS			0.000 kip-ft -37.500 kip-ft Clear loads		(1)	3 7	5	3) 	4		4.67		(2
	•	Replace e Add to ex	kisting load			B	ч Ч Т 100	х	Mat	18	0 0 0				4.07 Mat18			►
							1					37.5						-
≣↓	~ D	ISPLAY O	PTIONS														W	P E
=↑ =	~	Values		Size	- 160 % 🔀													5
AC	318-	14										10.02, 6.98	(ft) *	т Ш	• <u>+</u> •	1. 3	" Units:	English 🔻

Figure 18 – Assigning Soil Lateral Moment for Cantilever Retaining Wall Foundation (spMats)

9								spMats - Can	ilever Reta	ining Wall F	oundation.m	atx						- 0	
File	H	lome																	^
Pro	ject	Define	∰ Grid			↓ Select	Slabs	Columns	Piles	 Nodes	 Restraints	↓ Loads	Solve	Contours	Tables	Reporter ~	<u>≍</u> Display	Viewports	දිටු Settings
	LOAI	DS					Model Viev	v (Load Case	C - W So	l Toe)									• ×
		✓ Loads Load Case	2	C - W Soil	Area Toe	VZ VZ XZ XZ XZ XZ XZ													ک م ⁺ م ⁺ ک م م ⁺ م ⁺ ⊗
		Wz			-240.0000 Clear	psf loads													
	~ c	PTIONS)			3		4				(2
	0	Replace e Add to e	xisting loa isting loa	d 1			\frown	-		3.7	5		9 1.33			4.67			•
							(B) (A)	1.00	х	Mat1 -24	18 D		Mat18			Mat18			
								!				I							-
≣↓	~ 0	DISPLAY C	PTIONS															W	N OP E
=↑ =	~	Values		Size	160 %	1 1 1 1													5
AC	1 318-	14											10.42, 6.86	(ft) *	· #	• 📩 •	L 🕽	 Units: 	English 🔻

Figure 19 – Assigning Soil Toe Load for Cantilever Retaining Wall Foundation (spMats)

9			୯					spMats - Can	tilever Reta	ining Wall F	oundation.m	atx						- 0	×
File	F	lome																	^
Pro	ject	Define	0	rid		Select		Columns	Piles	 Nodes	 Restraints	↓ Loads	Solve	Contours	Tables	Reporter V	<u>∛</u> Display	Viewports	දිබු Settings
	LOAI	DS					Model Vie	w (Load Case	: D - W So	il Heel)									• ×
		✓ Load: Load Cas	e		D - W Soil Heel	Area Point	-												(€ م^* مي مي الم الم الح
		Wz			-1	621.0000 psf													
						Clear loads													
	~ 0	PTIONS		lead)			3		4				(2
		Add to e	existing	load						37	·5		1 3 3	.75		4.67			H
								-		J.1	<u> </u>		- 1.55			4.07			4
							(A)	v 1.00	х	Mat	18		Mat18			Mat18 -1621			
								;						i					1
=1																			
≡↓	~ 0	ISPLAY C	OTIO	IS														W	DP E
	~	Values			Size	- 160 % 👘													5
AC	1 318-	14											9.98, 6.74	(ft) *	∗ ∰	· 🗄 ·	L ⊃	 Units: 	English 🔻

Figure 20 – Assigning Soil Heel Load for Cantilever Retaining Wall Foundation (spMats)

9	6) 🛛 🖓	C.				spMats - Can	tilever Reta	iining Wall F	oundation.m	atx						- 0	×
File	F	lome																^
Pro	ject	Define	¢∰ Grid		Select	Slabs	Columns	Piles	 Nodes	 Restraints	↓ Loads	Solve	Contours	Tables	Reporter V	<u>≍</u> Display	Viewports	දිටු Settings
	LOA	DS				Model Vie	w (Load Case	: E - Surch	arge)									• ×
		✓ Loads Load Case Wz		E - Surcharge	Area Point													$\textcircled{3} \rho^{-} \rho^{+} \overbrace{D} \rho^{*} \overset{\circ}{\circ} \overset{\circ}{\bullet} \overbrace{X}^{*} \overset{\circ}{\circ}$
	• (PTIONS Replace ex Add to exi	isting load		Clear loads	-)	3.7	'5	3	9	4		4.67		(2
							, *				-	•						
							ч 1.00 У	х	Mat	18		Mat18			Mat18 -400			
							i											
≣↓	~ [ISPLAY O	PTIONS														W	OP E
=↑ ■	~	Values		Size	— 160 % <u>≍=</u>													5
AC	1 318-	14										10.03, 6.89	(ft) =	т Ш	· 🗄 ·	l J	• Units:	English 🔻

Figure 21 – Assigning Surcharge Load for Cantilever Retaining Wall Foundation (spMats)

9	6	- 8 5	C"				spMats - Can	tilever Reta	aining Wall F	oundation.m	atx						- 0	
File	Н	ome																^
Pro	iect	Define	ثلث Grid		Select		Columns	D Piles	 Nodes	 Restraints	↓ Loads	Solve	Contours	Tables	Reporter V	<u>≍</u> Display	Viewports	දිටු Settings
	LOAD	DS .				Model Viev	w (Load Case	: F - W Wa	all)									• ×
		✓ Loads Load Case		F - W Wal	Area Point													(€ م' م' € (¢ (¢
		Wz			-1935.0000 psf													
					Clear loads													
)									($\widehat{}$
	× 0	PTIONS	victing lo	ad			\neg	/			4	ر						-
	0	Add to exi	isting loa	d			-		3.7	75		1.33	./3		4.67			H
											-	4						
							<u>1</u> 00	х	Mat	18		Mat18 -1935			Mat18			
																		!
≣↓																		
=↑	~ D	ISPLAY O	PTIONS		_												W	OP E
	~	Values		Size	160 % 5=													5
AC	318-	14										10.46, 6.85	(ft) * !!!!	• III	· + ·	L 3	• Units:	English 🔻

Figure 22 – Assigning Wall Load for Cantilever Retaining Wall Foundation (spMats)

9	6	; ∃ ">					spMats - Can	ilever Reta	ining Wall F	oundation.m	atx						- 🗆	
File		Home																^
) Proj	iect	Define	∰ Grid		↓ Select	Slabs	Columns	Piles	-¦ Nodes	 Restraints	↓ Loads	Solve	Contours	Tables	Reporter	<u>≍</u> Display	Viewports	දිටු Settings
	SOL	VE			Run	Solve (Me	h)											÷ √× €
	~ •	SOLVE OPT Max. numbe Max. allowe Min. allower Uplift occurs	TIONS er of iterations td service displacement d soil contact area d active springs & piles s when displacement exceed quired reinforcement based of	s	10 0.1 in 0 % 0 % 0.1 in													کم لط +م ام ⋑
	~	Maxii Avera Avera MESH OPT Max. allowe Max. allowe Circle segm V Status Number Max. ele Max. ele Max. asp	mum moment within an eleme age moment within an eleme IONS di mesh size di aspect ratio ents r of elements ment size pect ratio	aent nt 36	0.25 ft 10 164 0.16 ft 0.25 ft 1.52	B)	3.7	5	3)	4		4.67			2
≣↓ =↑	~ 1	Node Nu	PTIONS Imbers Element	nt Numbers	5 <u>-</u>	_											V	OP E
AC	318	-14												* #	• <u>+</u> •	l J	• Units:	English 🔻

Figure 23 – Solve and Mesh Options (spMats)

5.2. Cantilever Retaining Wall Foundation Result Contours

Figure 24 – Vertical (Down) Displacement Contour (spMats)

9	6	ל <u>ו</u> ∃ ל	C ^a			:	spMats - Can	tilever Reta	ining Wall F	oundation.m	atx						- 🗆	×
File	ŀ	Home																^
Pro	ject	Define	∰ Grid		↓ Select	Slabs	Columns	Piles	 Nodes	 Restraints	↓. Loads	Solve	Contours	Tables	Reporter V) Display	Viewports	දිටු Settings
	CON • 1	HTOURS Envelope Mux Mux Mux Asx Asy Pressure Displace Uplace Uplace Ultimate	Down nent Up nent Down			Envelope - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	y x	nt Up (in)										$ (\bigcirc \ \rho^+ \ \rho^- \ \rho^+ \ \rho^- \ \rho^+ \ (\bigcirc \ \gamma^+ \ \rho^- \ \rho^+ \ \rho^- \ \rho^+ \ \rho^+$
≣↓	v	Elements	10113	Deformed Shape														
=↑		Node Nur	nbers	Undeformed Shape													W	DP E
		Element N	umbers	Size 100 %	5												-	5
AC	1 318-	-14										6.34, 0.80	(ft) *	* #	· ÷ ·	1 3	 Units: 	English 🔻

Figure 26 - Soil Bearing Pressure Contour for Case 1 (spMats)

Figure 27 - Soil Bearing Pressure Contour for Case 2 (spMats)

🤨 🗅 🖻	⊟ ⊅	C4				spMats - Can	tilever Reta	ining Wall F	oundation.m	atx						- 0	×
File Ho	ome																^
E) Project	Define	≎ Grid		Select	Slabs	Columns	Piles	 Nodes	 Restraints	↓ Loads	Solve	Contours	Tables	Reporter) Display	Viewports	දිටු Settings
CONT	OURS				Envelope -	Mux - Botto	m (kip-ft/f	t)									• ×
> Se > Ult	Mux Top Bottor Muy Asx Asy Pressure I Displacer Displacer timate	n Jown ent Up ent Down				4 4 3 2 1 1 1 0 9 9 2 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 3 2 3 3 2 3	m (kip-it/i										
~ DI	SPLAY OPT	IONS															
≣↓ ✓	Elements																
=	Node Num	bers	Undeformed Sha	pe													UP E
	Element Nu	Imbers	Size 1	00 %												-	S
ACI 318-14	4										8.32, 0.44	(ft) *	• III	· + ·	1 3	• Units:	English 🔻

Figure 28 - Moment Contour along X-Axis (Max for Toe) (spMats)

SP	1 6	日 1つ	C ⁴				spMats - Can	tilever Reta	aining Wall I	Foundation.m	iatx						- 0	×
File	Ho	ome																^
Pro	ject	Define	∰ Grid		↓ Select	Slabs	Columns	Piles	_l Nodes	 Restraints	↓ Loads	Solve	Contours	Tables	Reporter	<u>⊽</u> Display	Viewports	දිබු Settings
	CONT	OURS				Envelope -	Mux - Top (kip-ft/ft)										• ×
	> See	welope welope Botto Muy Asx Asy Pressure Displacer trivice	m Down nent Up nent Down			28.535 26.497 24.459 22.421 20.382 18.344 16.306 14.268 12.229 10.191 8.153 6.115 4.076 2.038 0.000	y x											$\mathbb{C} = \rho^+ \rho^+ \mathbb{A} \mathbb{A} $
	~ DI	SPLAY OP	TIONS															N
≣↓	~	Elements	bers														w	OP E
=↑ ≡		Element N	umbers	Size 100 %	V.													s
A	318-14	4										2.90, 0.93	3 (ft) 🔻 🔛	→	• = •	L D	• Units:	English *

Figure 29 - Moment Contour along X-Axis (Max for Heel) (spMats)

5.3. Cantilever Retaining Wall Foundation Required Reinforcement

<u>Figure 30 – Required Reinforcement Contour along X Direction (Bottom – Toe Design) (spMats)</u> (Note: minimum reinforcement governs)

9 🗈 🖻 🗏 🔊 연	spMats - Cantilever Retaining Wall Foundation.matx	– 🗆 X
File Home		^
타 말 : Project Define Grid	Image: Select Sales Contours Piles Nodes Restraints Loads Solve Contours Tables Reporter	✓ ☑ ☑ <i>✓ ☑ <i>✓ ☑ <i>✓ ☑ <i>✓ ✓ <i <i="" ✓="">✓ ✓ <i <i="" th="" ✓="" ✓<=""></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>
CONTOURS	Envelope - Asx - Top (in²/ft)	• ×
 Envelope Mux Muy Asy Top 	0.592 0.	
✓ DISPLAY OPTIONS ✓ Elements ✓ Elements ✓ Display Options ✓ Elements ✓ Undeformed Shape ✓ Element Numbers ✓ Size → 100 %		V TOP E
ACI 318-14	0.95, 0.98 (ft) • 🗰 • 拱 •	• 上 🗇 • Units: English •

<u>Figure 31 – Required Reinforcement Contour along X Direction (Top – Heel Design) (spMats)</u> (Note: minimum reinforcement governs)

5.4. Soil Reactions / Pressure

1. Results

1.1. Service

1.1.1. Sum of Reactions

1.1.1.1. S2

NOTES:

Sum of all forces and moments with respect to center of gravity (X,Y) = (4.88, 0.50) ft

Sum of Reactions	Fz	Mx	Му
	kips	kip-ft	kip-ft
Soil	13.24	0.00	22.16
Springs	-	-	-
Piles	-	-	-
Restraints	-	-	-
Slaved nodes	0.00	0.00	0.00
Total Reactions	13.24	0.00	22.16
Total loads	-13.24	0.00	-22.16

Figure 32 – Soil Service Reactions

1.1.2. Soil Disp. & Pressure

1.1.2.1. S2 NOTES:

[x] Indicates allowable pressure is exceeded.

Element	Node	Disp, Dz	Pressure, Qz	Node	Disp, Dz	Pressure, Qz
		in	ksf		in	ksf
83	128	-0.080	-2.678	86	-0.080	-2.678
	127	-0.082	-2.746	85	-0.082	-2.746
123	168	-0.001	-0.021	126	-0.001	-0.021
	167	-0.002	-0.083	125	-0.002	-0.083

1.1.2. Soil Disp. & Pressure

1.1.2.2. S1 NOTES:

[x] Indicates allowable pressure is exceeded.

Element	Node	Disp, Dz	Pressure, Qz	Node	Disp, Dz	Pressure, Qz
		in	ksf		in	ksf
83	128	-0.078	-2.587	86	-0.078	-2.587
	127	-0.079	-2.639	85	-0.079	-2.639
123	168	-0.015	-0.511	126	-0.015	-0.511
	167	-0.017	-0.558	125	-0.017	-0.558

Figure 33 – Soil Bearing Pressure

Case 1

Case 2

5.5. Cantilever Retaining Wall Foundation Mesh Status

Since spMats is utilizing finite element analysis to model and design the foundation. It is useful to track the number of elements used in the model to optimize the model results (accuracy) and running time (processing stage). spMats provides mesh status to keep tracking the mesh sizing as a function of the number of elements, minimum and maximum element sizes, and maximum aspect ratio.

✓ Status	Status								
Number of elements	164								
Min. element size	0.16 ft								
Max. element size	0.25 ft								
Max. aspect ratio	1.52								

Figure 34 - Mesh Status

6. Cantilever Retaining Wall Analysis and Design Results Comparison & Conclusions

Table 3 - Cantilever Retaining Wall Flexural Results								
Method of Solution	M _u , kip-ft/ft	A _{s,req} , in. ² /ft						
Reference	45.70	0.79						
Hand	45.70	0.78						
<u>spWall</u>	45.64	0.79						

Table 4 - Cantilever Retaining Wall Foundation Soil Bearing Pressure									
Mathad of Solution	Cas	se 1	Case 2						
Method of Solution	q1, psf	q2, psf	q1, psf	q2, psf					
Reference	2780	0	2710	492					
Hand	2784	0	2715	496					
<u>spMats</u>	2746	21	2639	511					

Table 5 - Cantilever Retaining Wall Foundation Results									
Mathad of Colution	Τα	e	Heel						
Method of Solution	Mu, kip-ft/ft	As,req, in. ² /ft	Mu, kip-ft/ft	As,req, in. ² /ft					
Reference	25.8*	0.59	38.2**	0.59					
Hand	24.3	0.58	29.9	0.58					
<u>spMats</u> 21.8 0.59 28.5 0.59									
* the downward load of the earth fill over the toe is neglected by the reference ** the upward reaction of the soil is neglected by the reference									

The results of all the hand calculations and the reference used illustrated above are in agreement with the automated exact results obtained from the <u>spWall</u> and <u>spMats</u> programs.

Note that the hand and reference considered the toe and heel as cantilever projecting outward and inward from the face of the stem, respectively. <u>spMats</u> provides the flexibility of modeling the foundation with the exact geometry and boundary conditions to achieve more accurate results leading to potential savings in the reinforcement required.

Some load cases were neglected by the reference for simplicity and to achieve a more conservative design. On the other hand, <u>spMats</u> take into account all the applied load cases and include them in the calculations of the required reinforcement for the toe and heel. Additional load combination can be easily employed in <u>spMats</u> to explore more loading scenarios to meet project criteria.