

Reinforced Concrete Cantilever Retaining Wall Analysis and Design (ACI 318M-14)

Reinforced Concrete Cantilever Retaining Wall Analysis and Design (ACI 318M-14)

Reinforced concrete cantilever retaining walls consist of a relatively thin stem and a base slab. The stem may have constant thickness along the length or may be tapered based on economic and construction criteria. The base is divided into two parts, the heel and toe. The heel is the part of the base under the backfill. This system uses much less concrete than monolithic gravity walls, but require more design and careful construction. Cantilever retaining walls can be precast in a factory or formed on site and considered economical up to about 7.5 m in height. This case study focuses on the analysis and design of a cantilever retaining wall using the engineering software programs <u>spWall</u> and <u>spMats</u>. The retaining wall is fixed to the reinforced concrete slab foundation and have a uniform cross section. After examining the wall stability, it was concluded that shear key is not needed to resist wall sliding. More information and detailed hand calculations about tapered cantilever retaining wall with shear key are provided in "<u>Reinforced Concrete</u> <u>Cantilever Retaining Wall Analysis and Design (ACI 318-14)</u>" design example. The following figure and design data section will serve as input for detailed analysis and design.

Contents

1.	Cantilever Retaining Wall Analysis and Design – spWall Software	2
	1.1. Cantilever Retaining Wall Model Input	3
	1.2. Cantilever Retaining Wall Results Contours	7
	1.3. Cantilever Retaining Wall Cross-Sectional Forces	9
	1.4. Cantilever Retaining Wall Maximum Displacement	13
	1.5. Cantilever Retaining Wall Cross-Sectional Forces at Stem Base	13
2.	Cantilever Retaining Wall Foundation Analysis and Design - spMats Software	14
	2.1. Cantilever Retaining Wall Foundation Model Input	15
	2.2. Cantilever Retaining Wall Foundation Result Contours	21
	2.3. Cantilever Retaining Wall Foundation Required Reinforcement	26
	2.4. Soil Reactions / Pressure	28
	2.5. Cantilever Retaining Wall Foundation Mesh Status	29
3.	Cantilever Retaining Wall Analysis and Design Observations & Conclusions	30

Code

Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14)

Reference

- Foundation Analysis and Design, 5th Edition, 1997, Joseph Bowles, McGraw-Hill Companies, Example 12.6
- spWall Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2022
- spMats Engineering Software Program Manual v10.00, STRUCTUREPOINT, 2020

Design Data

Wall Stem M	<u>Iaterials</u>	Wall Foundat	ion Materials
$f_{c}' = 21 \text{ M}$	Pa	f_c ' = 21 M	IPa
$f_y = 200 \text{ M}$	MPa	$f_y = 200$	MPa
$\gamma_c = 2400$	kg/m ³	$\gamma_c = 2400$	kg/m ³
Wall Stem D	<u>Dimensions</u>	Wall Foundat	ion Dimensions
Width	= 1.0 m strip	Width	= 1.0 m strip
Height	= 2.44 m	Length	= 1.98 m
Thickness	= 230 mm	Thickness	= 460 mm

Retaining Wall Loads

The following figure shows all the loads applied to the retaining wall where:

Figure 2 – Applied Loads

1. Cantilever Retaining Wall Analysis and Design – spWall Software

<u>spWall</u> is a program for the analysis and design of reinforced concrete shear walls, tilt-up walls, precast walls, retaining walls, tank walls and Insulated Concrete Form (ICF) walls. It uses a graphical interface that enables the user to easily generate complex wall models. Graphical user interface is provided for:

- Wall geometry (including any number of openings and stiffeners)
- Material properties including cracking coefficients
- Wall loads (point, line, and area)
- Support conditions (including translational and rotational spring supports)

spWall uses the Finite Element Method for the structural modeling, analysis, and design of slender and non-slender reinforced concrete walls subject to static loading conditions. The wall is idealized as a mesh of rectangular plate elements and straight line stiffener elements. Walls of irregular geometry are idealized to conform to geometry with rectangular boundaries. Plate and stiffener properties can vary from one element to another but are assumed by the program to be uniform within each element.

Six degrees of freedom exist at each node: three translations and three rotations relating to the three Cartesian axes. An external load can exist in the direction of each of the degrees of freedom. Sufficient number of nodal degrees of freedom should be restrained in order to achieve stability of the model. The program assembles the global stiffness matrix and load vectors for the finite element model. Then, it solves the equilibrium equations to obtain deflections and rotations at each node. Finally, the program calculates the internal forces and internal moments in each element. At the user's option, the program can perform second order analysis. In this case, the program takes into account the effect of in-plane forces on the out-of-plane deflection with any number of openings and stiffeners.

In <u>spWall</u>, the required flexural reinforcement is computed based on the selected design standard (ACI 318-14 is used in this case study), and the user can specify one or two layers of wall reinforcement. In stiffeners and boundary elements, <u>spWall</u> calculates the required shear and torsion steel reinforcement. Wall concrete strength (in-plane and out-of-plane) is calculated for the applied loads and compared with the code permissible shear capacity.

For illustration purposes, the following figures provide a sample of the input modules and results obtained from an <u>spWall</u> model created for the retaining wall in this case study.

1.1. Cantilever Retaining Wall Model Input

9		日 り	C.			s	pWall - Ca	ntilever Reta	ining Wall -	Bowles.walx					- 🗆	×
File	Ho	me														^
E) Proj	ect	Define	∰ Grid	↓ Select	Plates	Stiffeners	-¦ I Nodes	 Restraints	↓ Loads	Solve	Results	Tables	Reporter) Display	Viewports	දිටු Settings
	PROJE	CT					Model	/iew (Load	Case: A - De	ead)						• ×
	De: Un	sign code it system		ACI 318-14 Metric		• >			(₽ [×] [×] [×]
										A					В	
								\frown		-		1.0	00			La +a
								(1)		 						¯•
	✓ DE Pr R Pr Fi B B E Fi Pr Pr	SCRIPTION oject Name etaining Wa oject Descrij oundation A owles xamples 12-	II Analy ption Analysia 6 2/10 3:00	rsis and Design s and Design 5t /2023	h Edition by	/ Joseph 節 ①			2.440	У		W230	Imm			
≣↓ =↑	~ DI	SPLAY OPT	IONS					\smile		1					FRO	ONT
	Loa	d Case		A - Dead	• <											
AC	318-14	4									-	# *	÷. •	l D'	Units:	Metric 🔻

Figure 4 - Assigning Wall Stem Restraints for Cantilever Retaining Wall (spWall)

Figure 5 - Assigning Soil Loads for Cantilever Retaining Wall (spWall)

9 B 🖻 🖩 🔊 spWall - Cantilever Retaining Wall - Bowles.walx File Home ^ \bigcirc Ê Ð Ĥ **a** ~ <u>نې</u> \square Nodes Restraints Display Project Define Grid Select Plates Stiffeners Solve Results Tables Loads Reporter Viewports Settings SOLVE Solve (Mesh) • × ŵ y ^z× φĿ Run В 26 ✓ SOLVE OPTIONS G, Run Options 1.000 +q Include 2nd Order Effects Yes * Max. allowed Out-of-Plane H/150 Q, -1 Deflection 1000.000 mm 1 User Defined allowed Deflection \square Check Concrete Shear Strength of Wall Cross-sections (ACI with Solid walls only) Use Simplified Equations Use Detailed Equations (uniform walls only) ✓ MESH OPTIONS Max. allowed mesh size 0.250 m Max. allowed aspect ratio 36 * Circle segments 36 ✓ Status Number of elements 40 Min. element size 0.244 m 0.250 m Max. element size Max. aspect ratio 1.025 2.440 ➤ DISPLAY OPTIONS x 0 ${\equiv}{\downarrow}$ Wall Element Node Numbers Numbers FRONT =↑ 5 \equiv ₩ -+ • Э. ACI 318-14 Ŀ. Units: Metric *

Figure 6 - Solve and Mesh Options (spWall)

1.2. Cantilever Retaining Wall Results Contours

SP	` D) Cil			S	pWall - Ca	ntilever Reta	aining Wall -	Bowles.walx					- 🗆	×
File	Н	ome														^
Pro	ject	Define	≎ Grid	Select	Plates	Stiffeners	 Nodes	 Restraints	↓ Loads	Solve	Results	Tables	Reporter	<u>≍</u> Display	Viewports	ැබූ Settings
	RESU	ILTS					Envelor	e - Service	Displaceme	ents - Dz (+ve	e) (mm)					• ×
					M	25	2.5	57	Displaceme		., (,					ŵ
					Diagrams	Contours	2.3	74					~			× ×
	Υ E	nvelope					2.1	92				_				÷
		Dx (+ve	e)				2.0	09								26
		Dx (-ve))				1.8	26								Q
		Dy (+ve	e)				1.4	 61 í							1	+a
		Dy (-ve) Dz (+ve) =)				1.2	79								-a
		Dz (-ve))				1.0	96								1
		Plate Reinfo	orcement				0.9	13								\odot
	> U	ervice Iltimate					0.7	31								
							0.5	48 65								
							0.1	83								
							0.0	00								
								-								
								Ĩ								
								-								
								1								
	~ D	ISPLAY OPTI	ONS													
= 1		Elements		✓ Defor	ned Shape		1		x						~	~~~~
≡↓		Node Numb		✓ Undef	ormed Shape			-							31	FINDVT
\uparrow				Scale -	172	¥=									er.	2
						- <u>-</u> -										
AC	318-1	14								0.98, 2.39 (m)	-	# *	t 6	_ >	Units:	Metric *

Figure 8 – Lateral Displacement Contour (Out-of-Plane) (spWall)

1.3. Cantilever Retaining Wall Cross-Sectional Forces

9	5	∋ 🛛 ୭	C.			sj	oWall - Ca	ntilever Ret	aining Wa	II - Bowles.v	valx				- 🗆	×
File		Home														^
Pro	ो ject	Define	°∰ Grid) Select	Plates	Stiffeners	 Nodes	 Restraints	Loads	Solv	ve Resu	ults Tables	Reporter	ば <u>≕</u> Display	Viewports	ැබූ Settings
	RES	SULTS					Wall Cr	oss-Section	hal Force	5 - Nuy - U	1 (kN)					• ×
					↓ Diagrams	Contours										⟨x ××
	>	Stiffener Inter	mal Forces									0.000				⊊ ⊨
	~	Wall Cross-Se	ectional Force	es												22
		✓ Nuy U1														
		> Vux														+0
		> Vuz														-a
		> Muy														Ð
		> Muz														
	>	Wall Concrete	e Shear Strer	ngth				-								+
								-								
								-								
	~	DISPLAY OP	TIONS													
				✓ Fill Dia	grams			3	7							
≣↓				✓ Show	/alues				x	-13 212						_
=				✓ Min/M	lax only			+		13,213					FR	ONT
		Show Shea	r Force	Size	100 %	¥ <u>=</u>										
AC	1 3 1 8	3-14								0.40, 2.5	4 (m) 👘	· ·	• <u>+</u> • b	5	Units:	Metric *

SP	50	ອ 🛛 າ	୯			s	oWall - Ca	ntilever Ret	aining Wall -	Bowles.walx					- 0	×
File		Home														^
E) Proj	h ject	Define	∰ Grid	↓ Select	Plates	Stiffeners	-¦ I Nodes	 Restraints	↓ Loads	Solve	E Results	Tables	Reporter) Display	Viewports	کی) Settings
	RES	SULTS					Wall Cr	oss-Sectior	al Forces -	Vuz - U1 (kN)						• ×
					N_ →1											ŵ
					Diagrams	Contours										× ×
	>	Stiffener Inter	mal Forces									0.000				÷
	~	> Nuy	ectional Force	es												24
		> Vux														G.
		✓ Vuz						_								+q
		> Mux														-a
		> Muy														1
	>	> Muz Wall Concrete	Shaar Stran	ath												
	<i>*</i>	wan concrete	silear stren	gui												
)			
	~	DISPLAY OP	ΓΙΟΝ													
				✓ Fill Dia	agrams				,							
= 1				✓ Show	values			7	ſ							_
≣↓				✓ Min/M	lax only			+	X					33.2	82 FF	ONT
-T			r Force	Size	150 9	; ;_									• etc	
AC	1318	8-14					L			-0.04, 2.57 (m)	-		· +		Units:	Metric 🔻
										. ,	1				1	

Figure 10 – Out-of-plane Shear Diagram (spWall)

SP		⊳ 🛛 າ	C.			sj	pWall - Ca	ntilever Ret	aining Wall -	Bowles.walx					- 0	×
File		Home														^
E, Proj	ी ट्र	Define	∰ Grid	↓ Select	Plates	Stiffeners	 Nodes	 Restraints	↓ Loads	Solve	E Results	Tables	Reporter	ジニ Display	Uiewports	کی) Settings
	RE	SULTS					Wall Cr	oss-Sectior	al Forces -	Mux - U1 (kN	lm)					• ×
					I Diagrams	Contours										G ××
	> *	Stiffener Inter Wall Cross-Se > Nuy > Vux > Vuz > Mux U1 > Muy > Muz	nal Forces					_				0.000				+ ای ام ام ا⇔ ا∳
	2	Wall Concrete	Shear Stren	gth												
								_								
								_								
	*	DISPLAY OP	ΓΙΟΝS					_								
				✓ Fill Dia	agrams									\backslash		
				✓ Show	values			2	7							
≣↓				✓ Min/M	lax only			4	X					32.0	B5	ONT
=↑ ≡			r Force	Size ——	150 %	: <u>></u>		1							• mt -	
AC	1318	8-14								0.31, 2.57 (m)	-		t L	5	Units:	Metric *

Figure 11 – Bending Moment Diagram (spWall)

SP	5	b ⊞ 9	C.			5	pWall - Ca	intilever Retai	ning Wall -	Bowles.wab	(- 0	×
File		Home														^
Pro	ا ject	Define	≎ Grid	Select	Plates	Stiffeners	-¦- Nodes	 Restraints	↓↓ Loads	L Solve	Results	Tables	Reporter V	<u>≍</u> Display	Viewports	ැි Settings
	RE:	SULTS					Envelo	oe - Plate Re	inforcemer	it - Asy (m	m²/m)					• ×
					N_4		_ 47	9.541								ŵ
					Diagrams	Contours	46	3.884								× z×
	~	Envelope					44	8.227								÷
		 Service Di Plate Rein 	splacements				43	2.570								26
		Asx	loreement				41	6.913								G
		Asy					40	1.256 5 500								+Q,
	>	Service Ultimate					36	9.942								-α,
		onumate					35	4.285								1
							33	8.628								0
							32	2.971								
							30	7.314								
							29	6.000								
	*	DISPLAY OPT	TIONS				-		У							
≣↓		✓ Elements			ned Shape				х							ONT
=↑		Node Num	bers	Undef					I							
\equiv		Element Nu	umbers	Scale —	172	1×=										
AC	1 3 1	8-14							().99, 2.44 (r	n) –		t. • 6	Э	Units:	Metric *

Figure 12 - Required Vertical Reinforcement (spWall)

1.4. Cantilever Retaining Wall Maximum Displacement

1. Results
1.1. Service
1.1.1. Nodal Displacements
1.1.1.1. S1

Coordinate System: Global

Node	Dx	Dv	Dz
	mm		 mm
1	0.000	0.000	0.000
2	0.000	0.000	0.000
3	0.000	0.000	0.000
4	0.000	0.000	0.000
5	0.000	0.000	0.000

Figure 13 - Displacement at Critical Section (Service Combinations) (spWall)

1.2. Ultimate 1.2.1. Nodal Displacements 1.2.1.1. U1

Coordinate System: Global

Node	Dx	Dy	Dz
	mm	mm	mm
1	0.000	0.000	0.000
2	0.000	0.000	0.000
3	0.000	0.000	0.000
4	0.000	0.000	0.000
5	0.000	0.000	0.000

Figure 14 – Displacement at Critical Section (Ultimate Combinations) (spWall)

1.5. Cantilever Retaining Wall Cross-Sectional Forces at Stem Base

1.2.2. Wall Cross-Sectional Forces

1.2.2.1. U1

Coordinate System: Global

(+) Horizontal cross-section above Y-coordinate

(-) Horizontal cross-section below Y-coordinate

	Wall Crossection		In	-Plane Forces		Out-Of-Plane Forces				
No.	Y coordinate	X-Centroid	Vux	Nuy	Muz	Vuz	Mux	Muy		
	m	m	kN	kN	kNm	kN	kNm	kNm		
1+	0.000	0.500	0.00	-13.21	0.00	33.28	32.08	0.00		

Figure 15 - Wall Cross-Sectional Forces (spWall)

2. Cantilever Retaining Wall Foundation Analysis and Design - spMats Software

<u>spMats</u> uses the Finite Element Method for the structural modeling, analysis and design of reinforced concrete slab systems or mat foundations subject to static loading conditions.

The slab, mat, or footing is idealized as a mesh of rectangular elements interconnected at the corner nodes. The same mesh applies to the underlying soil with the soil stiffness concentrated at the nodes. Slabs of irregular geometry can be idealized to conform to geometry with rectangular boundaries. Even though slab and soil properties can vary between elements, they are assumed uniform within each element. Piles and/or supporting soil are modeled as springs connected to the nodes of the finite element model.

For illustration purposes, the following figures provide a sample of the input modules and results obtained from an <u>spMats</u> model created for the cantilever retaining wall foundation in this case study.

2.1. Cantilever Retaining Wall Foundation Model Input

Figure 16 - spMats Interface

Structure Point

Figure 17 – Assigning Soil Lateral Moment for Cantilever Retaining Wall Foundation (spMats)

Structure Point CONCRETE SOFTWARE SOLUTIONS

Figure 18 – Assigning Soil Heel Load for Cantilever Retaining Wall Foundation (spMats)

Figure 19 – Assigning Surcharge Load for Cantilever Retaining Wall Foundation (spMats)

Figure 20 – Assigning Wall Load for Cantilever Retaining Wall Foundation (spMats)

Structure Point CONCRETE SOFTWARE SOLUTIONS

Figure 21 - Solve and Mesh Options (spMats)

2.2. Cantilever Retaining Wall Foundation Result Contours

Figure 22 – Vertical (Down) Displacement Contour (spMats)

🔋 🖹 🖻 🖩 🖹 이 연	spMats - Retain	ning Wall Foundation - Bowles.matx			– 🗆 🗙
File Home					^
타고 알 바라 다. Project Define Grid Select	Slabs Columns	Piles Nodes Restraints	Loads Solve Contours	Tables Reporter D	Display Viewports Settings
CONTOURS	Envelope - Displacement U	Up (mm)			• x
 Envelope Mux Muy Asx Asy Pressure Down Displacement Up Displacement Down Service Ultimate 	0.000 0.0000 0.0000 0.0000 0.000000				
DISPLAY OPTIONS USPLAY OPTIONS Deformed Shape Note Number					N TOP E
					s
ACI 318-14			0.87, 0.99 (m) 🔻	• # • <mark></mark> • L	🔊 🔻 Units: Metric 🔻

Figure 24 – Soil Bearing Pressure Contour (spMats)

Figure 25 - Moment Contour along X-Axis (Max for Toe) (spMats)

Figure 26 - Moment Contour along X-Axis (Max for Heel) (spMats)

2.3. Cantilever Retaining Wall Foundation Required Reinforcement

<u>Figure 27 – Required Reinforcement Contour along X Direction (Bottom – Toe Design) (spMats)</u> (Note: minimum reinforcement governs)

<u>Figure 28 – Required Reinforcement Contour along X Direction (Top – Heel Design) (spMats)</u> (Note: minimum reinforcement governs)

2.4. Soil Reactions / Pressure

1. Results 1.1. Service				
1.1.1. Sum of R	leactions			
1.1.1.1. S1				
NOTES: Sum of all forces an	nd moments with	respect to center	of gravity (X,Y) =	(0.990, 0.500) r
Sum of Reactions	Fz	Мх	Му	
	kN	kNm	kNm	
Soil	87.03	0.00	24.50	
Springs	-	-	-	
Piles	-	-	-	
Restraints	-	-	-	
Slaved nodes	0.00	0.00	0.00	
Total Reactions	87.03	0.00	24.50	
Total loads	-87.03	0.00	-24.50	

Figure 29 - Soil Service Reactions (spMats)

1.1.2. Soil Disp. & Pressure

1.1.2.1. S1

NOTES: [x] Indicates allowable pressure is exceeded.

Element	Node	Disp, Dz	Pressure, Qz	Node	Disp, Dz	Pressure, Qz
		mm	kN/m²		mm	kN/m²
111	140	-2.122	-78.313	117	-2.122	-78.313
	139	-2.216	-81.785	116	-2.216	-81.786
132	161	-0.197	-7.266	138	-0.197	-7.267
	160	-0.288	-10.638	137	-0.288	-10.639

Figure 30 – Soil Bearing Pressure (spMats)

2.5. Cantilever Retaining Wall Foundation Mesh Status

Since <u>spMats</u> is utilizing finite element analysis to model and design the foundation. It is useful to track the number of elements used in the model to optimize the model results (accuracy) and running time (processing stage). <u>spMats</u> provides mesh status to keep tracking the mesh sizing as a function of the number of elements, minimum and maximum element sizes, and maximum aspect ratio.

✓ Status					
Numb	er of elements		220		
Min. e	lement size		0.076	m	
Max. e	lement size		0.100	m	
Max. a	spect ratio		1.316		

Figure 31 – Mesh Status (spMats)

3. Cantilever Retaining Wall Analysis and Design Observations & Conclusions

The reference considered the toe and heel as cantilever projecting outward and inward from the face of the stem, respectively. <u>spMats</u> provides the flexibility of modeling the foundation with the exact geometry and boundary conditions to achieve more accurate results leading to potential savings in the reinforcement required.

Some load cases are usually neglected in the hand solution for simplicity and to achieve a more conservative design. <u>spMats</u> takes into account all the applied load cases and include them in the calculations of the required reinforcement for the toe and heel. Additional load combination can be easily employed in <u>spMats</u> to explore more loading scenarios to meet project criteria.

If the designer decided to transfer the wall reactions to the foundation (reactions from the <u>spWall</u> model to <u>spMats</u> model) instead of applying the loads directly on the foundation as shown in this case study, the designer is advised to take the care required in exporting the wall reactions carefully to the foundation model to ensure completeness and accuracy in the sign convention.

The effect of buoyancy is not shown in this case study as the water table was assumed to be below the bottom of the retaining wall. Additional loading considerations would be needed to adequately address this condition.