

Transmission Tower Reinforced Concrete Pile Cap Foundation

Transmission Tower Reinforced Concrete Pile Cap Foundation

The purpose of a transmission line tower is to support conductors carrying electrical power and one or two ground wires at suitable distances above the ground level and from each other. The transmission line towers cost about 35 to 45 per cent of the total cost of the transmission line. A transmission tower is commonly a space truss and is an indeterminate 3D structure. This case study focuses on the design of transmission tower foundation using the engineering software program <u>spMats</u>. The tower under study is a galvanized steel tower type 2DT6 for 230kV transmission line with a total height of 100 ft. All the information provided by the sturcutral engineer regarding the transmission tower are shown in the following figures and design data section and will serve as input for foundation design. Because of tower height, significant uplift is expected and a pile supported foundation is selected to resist the design overturning moments. Eight 24" diameter piles are assembled in a pile cap as shown in the following figure.

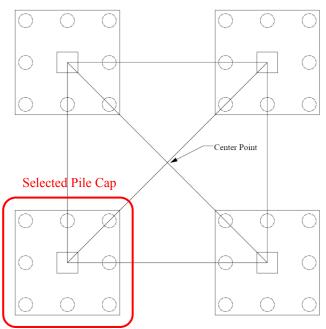


Figure 1 – Transmission Tower Foundation Layout Plan

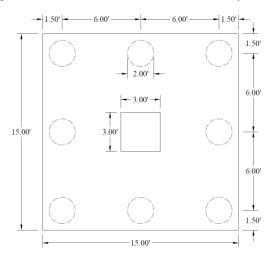


Figure 2 – Transmission Tower Foundation Geometry

Code

Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)

Reference

spMats Engineering Software Program Manual v8.50, StucturePoint LLC., 2016

Design Data

Concrete Pier

Size = 3 ft x 3 ft Height = 2.3 ft Weight = 3 kips Clear Cover = 2 in.

Pile Cap Foundation

 f_c ' = 3,000 psi f_y = 60,000 psi Thickness = 4 ft Clear Cover = 2 in. Pile Cap Weight = 133.7 kips Superimposed Soil Weight = 24.1 kips = 115 psf over the foundation (pile cap) cross-section

Concrete Piles

 $f_c' = 4,000 \text{ psi}$ $f_y = 60,000 \text{ psi}$ Diameter = 2 ft Clear Cover = 3 in. Length = 26 ft Center-to-Center Distance = 6 ft Number of Piles Per Leg = 8 Piles Pile embedment = 6 in.

Foundation Loads

 $F_z = 937.0$ kips $M_y = 610$ kips-ft (Reversible) $M_x = 568$ kips-ft (Reversible)

Contents

1.	Foundation Analysis and Design – spMats Software	1
2.	Two-Way Punching Shear Check - Piles	6
3.	Pile Reactions	7
4.	Pile Cap Model Statistics	8
5.	Column and Pile Design - spColumn	9
6.	2D/3D Viewer	13
7.	Tied vs. Spiral Confinement	14

CONCRETE SOFTWARE SOLUTIONS

1. Foundation Analysis and Design – spMats Software

<u>spMats</u> uses the Finite Element Method for the structural modeling, analysis and design of reinforced concrete slab systems or mat foundations subject to static loading conditions.

The slab, mat, or footing is idealized as a mesh of rectangular elements interconnected at the corner nodes. The same mesh applies to the underlying soil with the soil stiffness concentrated at the nodes. Slabs of irregular geometry can be idealized to conform to geometry with rectangular boundaries. Even though slab and soil properties can vary between elements, they are assumed uniform within each element. Piles are modeled as springs connected to the nodes of the finite element model. Unlike for springs, however, punching shear check is performed around piles.

For illustration and purposes, the following figures provide a sample of the input modules and results obtained from an spMats model created for the transmission tower reinforced concrete foundation (pile cap) in this example.

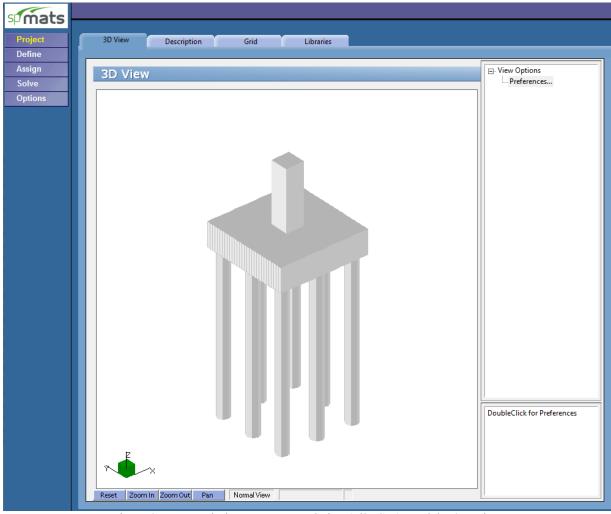


Figure 3 - Transmission Tower Foundation (Pile Cap) Model - 3D View

Project Define Assign Solve Options	Properties Restraints Load Combinations Loads Piles	Nodal Springs Slaved Nodes ⊖ Piles □ R24
	Add/Edit Pile Label File Pile Type Pile Dimensions Round Diameter d (in) Length (h) 24 25 4	
	Pie Material Mod Elasticity (kii) Select Sol Concrete ▼ 3834.25 Bedrock ▼ DK Cancel	

Figure 4 – Defining Piles

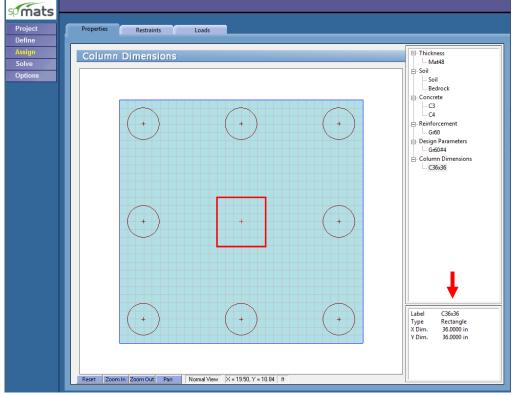


Figure 5 – Assigning Concrete Pier

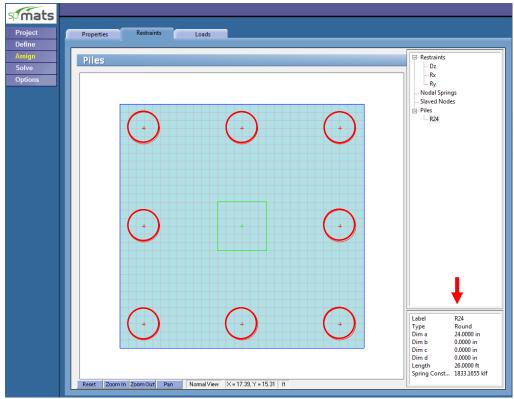


Figure 6 – Assigning Piles

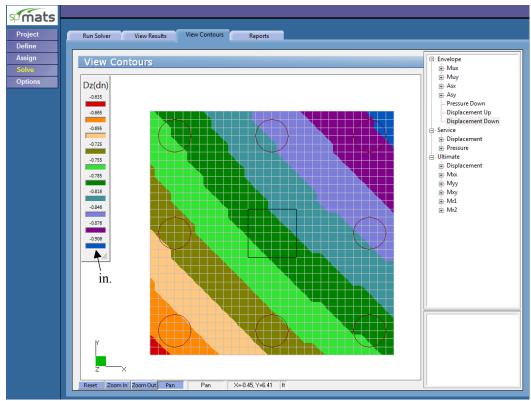


Figure 7 - Transmission Tower Foundation (Pile Cap) Vertical Displacement Contour

Figure 8 - Transmission Tower Foundation (Pile Cap) Moment Contour along Y-Axis

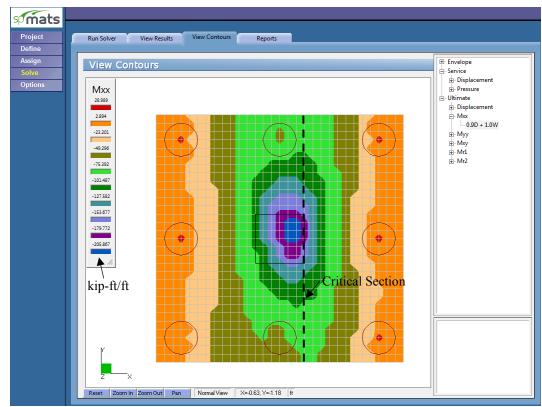


Figure 9 - Transmission Tower Foundation (Pile Cap) Moment Contour along X-Axis - Complete Model

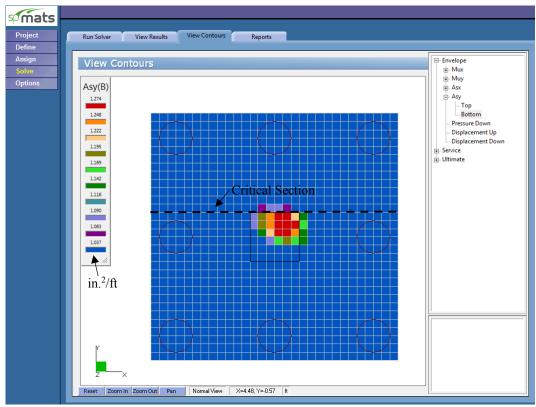


Figure 10 - Required Reinforcement Contour along Y Direction

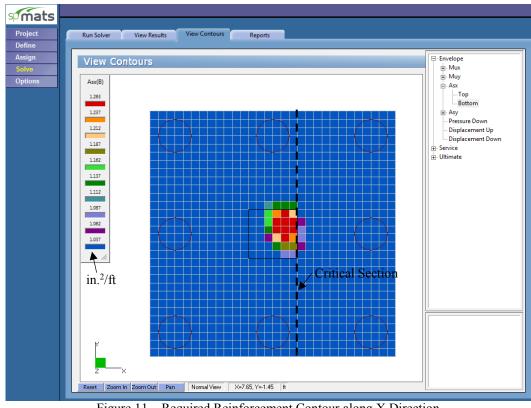


Figure 11 - Required Reinforcement Contour along X Direction

2. Two-Way Punching Shear Check - Piles

According to ACI 312-14 (R13.2.7.2), if shear perimeters overlap, the modified critical perimeter should be taken as that portion of the smallest envelope of individual shear perimeters that will actually resist the critical shear for group under consideration. <u>spMats</u> reports standard shear perimeter for three conditions (interior, edge, and corner) only considering adequate spacing and edge distance is provided to prevent overlapping or truncated shear perimeter.

B7 - Punching Shear Around Piles (Ultimate Load Combinations):								
Units> Applied Shear Force Vu (kips), Applied Moments Mux, Muy (k-ft) Factored Shear Stress vu (psi), Factored Shear Resistance vc (psi) Concrete Strength f'c (psi), distances x_Offset, Y_Offset (ft) Average depth (in), Dimensions Bx, By (ft) Area (in^2), Jxx, Jyy, Jxy (in^4)							i)	
Geometry of	Resisting	Area						
	Dile	Av	araga	Dimen	eione	Cent	roid	
Node L	abel	Location D	epth _	Bx	By	X Offset	Y Offset	5
97 R24		Inner	38.75	5.23	5.23	3 0.00	0.00)
109 R24 121 R24		Inner	38.75	5.23	5.23	3 -0.00	0.00)
469 R24		Inner	38.75	5.23	5.23	-0.00	-0.00)
493 R24		Inner	38.75	5.23	5.23	-0.00	-0.00)
841 R24		Inner Inner Inner	38.75	5.23	5.23	0.00	-0.00)
841 R24 853 R24		Inner	38.75	5.23	5.23	-0.00	-0.00)
865 R24		Inner Inner Inner Inner Inner Inner Inner Inner	38.75	5.23	5.23	-0.00	-0.00)
Properties		lg Area						
Node Pile	Label	Area				/Y		
97 R24						E 0		
109 R24		7631.13 7631.13	42180	34.00	4218033.	50	-0.00	
121 R24		7631 13	42180	4218033.00 4		00	-0.00	
469 R24		7631.13	7631.13 4218034.		4218033	.50	0.00	
493 R24		7631.13	4218033.00 42		4218032.50 0.0		0.00	
841 R24		7631.13	4218033.50 4		4218033.00		0.00	
853 R24		7631.13	4218033.50 4218033		.00	-0.00		
865 R24		7631.13	4218033.00 4218033 4218034.00 4218033 4218033.00 4218033 4218033.50 4218033 4218033.50 4218033 4218033.50 4218033 4218033.50 4218033 4218033.50 4218033		4218032.	.50		
Factored 2	ad Combinat Applied For		1.0W					
	le Label	Vu			_			_
97 R24		79.96	-0.0 0.400)	0.0	0.400
109 R24		94.44		-0.	0 0.400)	-0.0	0.400
121 R24		107.48		-0.	0 0.400)	-0.0	0.400
469 R24		93.49		υ.	0 0.400)	0.0	0.400
493 R24 841 R24		121.13 105.58		0.	0 0.400)	0.0	0.400
841 R24 853 R24		120.18		-0.	0 0.400)	0.0	0.400
865 R24		133.09		0.	0 0.400 0 0.400 0 0.400 0 0.400)	-0.0	0.400
	Stress and						0.0 0.0 -0.0	
			-			Critical	Point	
Node P	ile Label	vu	f'			X_Offset 1	_Offset	
97 R24		10.4	8 300	0.00	164.32	$\begin{array}{c} -1.85 \\ -0.00 \\ -2.61 \\ 1.19 \\ -2.61 \\ 1.54 \\ 2.12 \end{array}$	-1.85	Safe
109 R24		12.3	8 300	0.00	164.32	-0.00	-2.61	Safe
121 R24		14.0	8 300	0.00	164.32	-0.00	-2.61	Safe
469 R24		12.2	5 300	0.00	164.32	-2.61	-0.00	Safe
493 R24		15.8	7 300	0.00	164.32	1.19	2.33	Safe
841 R24 853 R24		13.8	4 300	0.00	164.32	-2.61	-0.00	Safe
853 R24 865 R24		17.1	3 300	0.00	164.32	2 12	-2.12	Safe
000 1/24		17.4	- 500		101.04	÷.14	1.04	Sare

Figure 12 – Two-Way Shear Results around Piles

3. Pile Reactions

The model results provide a detailed list of the pile reactions indicating the magnitude and direction of the resulting forces on each pile in the foundation model. Whether force is downward compression or upward net tension on the pile, the load combination producing the maximum reaction is denoted in the output results table.

	ad Compina Soil	tion: 1.0D + Spring	1.0W Pile	Restr	ainte			Slaved N	lodes	
Node -		Fz			ix	Му	Fz	_SIAVed N Mx	ioues	Му
97	0.139		101.762							
	0.152	_	111.188	_	_	_	-	-	_	
	0.162	_	118.957	-	-	-	-	-	_	
	0.151	_	110.593	_	-	_	-	-	_	
	0.174	_	127.869	-	-	_	-	_	-	
841	0.161	-	117.773	-	-	-	-	-	-	
853	0.174	-	127.274	-	-	-	-	-	_	
865	0.184	-	134.967	-	-	-	-	-	-	
Sum of	all forces	and moments	with respect	to center of	gravity	(X, Y) =	(7.50, 7	.50) ft		
Sum of	Reactions	FΖ	Mx	Му						
Soil		146.357	30.860	-33.142						
Springs		-	-	-						
Piles		950.383	288.641	-309.984						
Restrai		-	-	-						
Slaved	Nodes	-	-	-						
Total R	eactions	1096 740	319.501	-343.126						
			-319.501							

Figure 13 – Piles Service Reactions

cimate Lo	oad Combina	, Moment (kip tion: 0.9D + 1	L.OW						
	Soil		Pile	Restra				ved Nodes	
Node	FΖ	FZ	FZ F2	z Mx		Му	FZ	Mx	Му
97	0.109	_	79.964	_		_	_	-	
109	0.129	-	94.439	-	-	-	-	-	
121	0.147	-	L07.475	-	-	-	-	-	
469	0.127	-	93.488	-	-	-	-	-	
493	0.165	-	121.128	-	-	-	-	-	
841	0.144	-	L05.581	-	-	-	-	-	
	0.164		120.177	-	-	-	-	-	
	0.182		133.092	-	-	-	-	-	
Sum of a	all forces	and moments w	ith respect to	center of	gravity (X, Y) =	(7.50, 7.50)	ft	
Sum of 1	Reactions	FΖ	Mx	Му					
		131.721	49.376	-53.027					
Soil									
Soil Springs		-	-	-					
Springs Piles		-	461.826	- 495.975					
Springs Piles Restrain	nts	-	461.826	-495.975 -					
Springs Piles	nts	-	461.826 _ _	-495.975 - -					
Springs Piles Restrain Slaved N	nts Nodes	-		- -					

Figure 14 – Piles Ultimate Reactions

Note: Positive and negative reaction values indicate compression and tension forces in piles, respectively.

CONCRETE SOFTWARE SOLUTIONS

4. Pile Cap Model Statistics

Since spMats is utilizing finite element analysis to model and design the foundation. It is useful to track the number of elements and nodes used in the model to optimize the model results (accuracy) and running time (processing stage). spMats provides model statistics to keep tracking the mesh sizing as a function of the number of nodes and elements.

Startup Defaults	Autosave	Display	Statistics
Charlin Hallon			
Statistics			
Nodes Nodes	961	Elements	900
Definitions			
Thickness	1	Nodal Loads	0
Concrete	2	Design Param.	1
Soil	2	Nodal Springs	0
Reinforced Steel	1	Slaved Nodes	0
Surface Loads	13	Load Combos	2

Figure 15 – Model Statistics

5. Column and Pile Design - spColumn

spMats provides the options to export columns and pile information from the foundation model to spColumn. Input (CTI) files are generated by spMats to include the section, materials, and the loads from the foundation model required by spColumn for strength design and investigation of piles and columns. Once the foundation model is completed and successfully executed, the following steps illustrate the design of a sample pile and column.

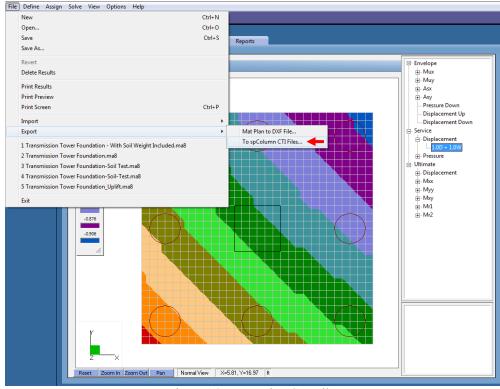
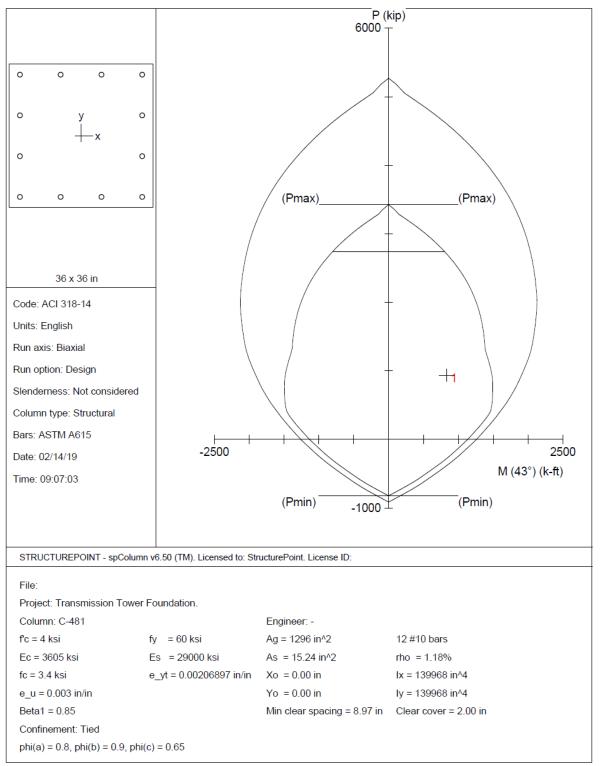
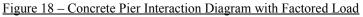


Figure 16 – Exporting CTI Files


Export to spColumn CTI Files	Export to spColumn CTI Files
Run Option Structural Member C Investigation Columns © Design Viles	Run Option Structural Member ^C Investigation ^I Columns ^C Design ^I Piles
fc: 4 ksi fy: 60 ksi	fc: 4 ksi fy: 60 ksi
Reinforcement	Reinforcement
Bar set: ASTM A615 💌	Bar set: ASTM A615
Minimum Maximum	Minimum Maximum
No. of bars: 4 12	No. of bars: 4 12
Bar size: #6 💌	Bar size: #4 💌 #14 💌
Clear cover (Longitudinal Bars) 3 in	Clear cover (Longitudinal Bars) 2 in
Eliminate duplicate loads	✓ Eliminate duplicate loads
OK Cancel	OK Cancel


Figure 17 – Exporting CTI Files Dialog Box

After exporting spColumn input files, the pile and column design/investigation can proceed/modified to meet project specifications and criteria. In the following a sample pile and column design results are shown as an example.

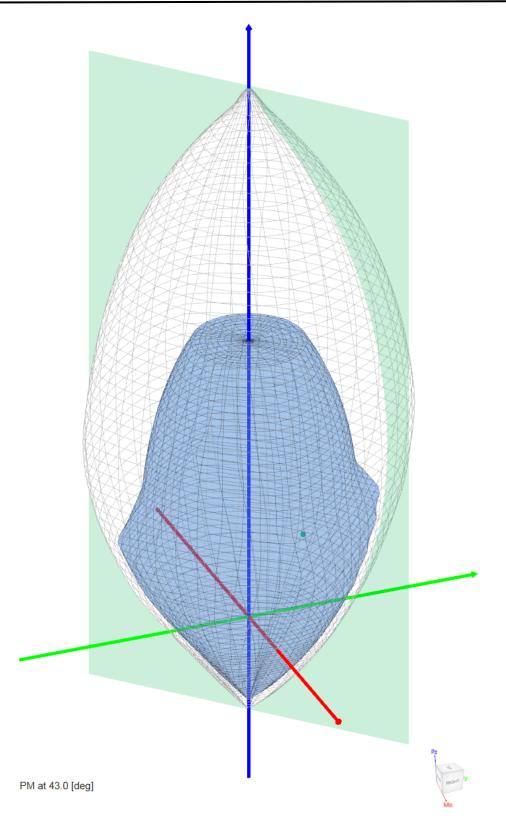


Figure 19 – Column 3D Failure Surfaces

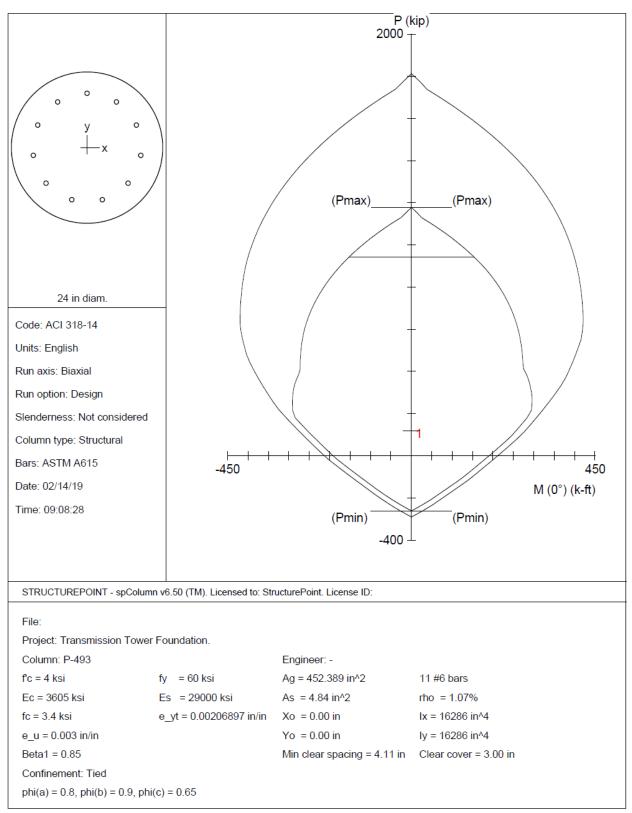


Figure 20 - Pile Interaction Diagram with Reaction Applied

6. 2D/3D Viewer

2D/3D Viewer is an advanced module of the spColumn program. It enables the user to view and analyze 2D interaction diagrams and contours along with 3D failure surfaces in a multi viewport environment.

2D/3D Viewer is accessed from within spColumn. Once a successful run has been performed, you can open 2D/3D Viewer by selecting the **2D/3D Viewer** command from the **View** menu. Alternatively, 2D/3D Viewer can also be accessed by clicking the 2D/3D Viewer button in the program toolbar.

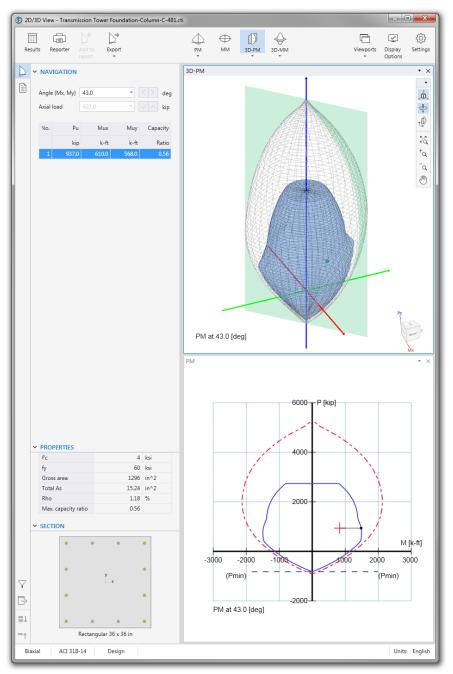


Figure 21 – 2D/3D View for Column

7. Tied vs. Spiral Confinement

The builder was provided two options for confinement to increase field and construction flexibility. The impact of spiral vs tied confinement is illustrated below.

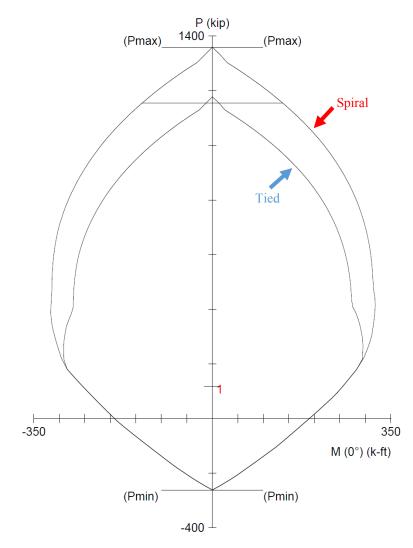


Figure 22 - Tied vs. Spiral Confinement